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Abstract. X-ray crystallography is one of the main methods to establish the
three-dimensional structure of biological macromolecules. In anyXesgeri-
ment, one can measure only the magnitudes of the complex Fourierceaesi

of the electron density distribution under study, but not their phasesprdie

lem of recovering the lost phases is called the phase problem. Buildingrtiere
work by Lunin/Urzhumtsev/Bockmayr we describe a constraint-bapptbach

to the phase problem. We introduce the mathematical foundations, ddrasic
integer programming formulation, and discuss possible refinementgloygling
additional constraints.

1 Introduction

Knowledge about the three-dimensional structure of bicklgnacromolecules is an
essential foundation of structural biology and biotecbgygl In X-ray crystallography
the arrangement of atoms within a crystal is determined fdhmee-dimensional repre-
sentation of the electron density. From X-ray experiments getdiffraction datade-
pending on the molecular structure, i.e., the intensitiesftections of X-rays diffracted
by the crystal. X-rays are scattered exclusively by thetedes in the atoms, so one is
searching for a relation between the measured intensitig® deams diffracted at the
object in question and the crystal structure, which can lseritged by the electron den-
sity distribution. Electron density represents probahally where electrons can be
found in the molecule. The first step on the way to estimate/sta¥'s electron density
is the collection of crystallographic data. This is donehwtite help of aiffractometer
or a synchrotron: an X-ray beam is diffracted by the crystal discrete set of directions
and the reflection intensities are measured. With the hetlpigtliffraction data and the
usage of mathematical as well as experimental methods eatr@h density map can
be derivedDirect methodsise mathematical techniques to compute an electron density
map from the diffraction data without any further experiseThe main problem here
is thephase problemexperiments provide only the intensities of the X-ray$rddted
in different directions and so the electron density magigucan be calculated, whereas
the information about the phase shift is lost.

Lunin, Urzhumtsev and Bockmayr [2] proposed a 0-1 integegmamming approach
to direct phasing. As a research contribution to a cryggadphic journal, this article
is not easily accessible. In the present paper, we introthisevork to the constraint
programming community. We describe the mathematical fatiods, derive step by



step the basic integer programming formulation, and dsgassible refinements by
including additional constraints.

2 Basic terminology

Vectors, matrices as well as higher-dimensional arraysh&iinoted with bold letters,
x - y denotes the scalar product of two vecterandy.

Every crystal consists of identical molecules, resp. caexgs of molecules strictly or-
dered in all three dimensions. This means that we can findal@l@piped containing
such a complex of molecules which builds up the whole cry&itak repeatedly stacked
together in all three dimensions. This parallelepiped.a@neagal, is not unique. It is de-
fined by the length of its edges as well as the angles betwesn &md is calledinit
cell. These base units, translated in three dimensions, buitdcuystal lattice

We will denote the unit cell’s volume witl,..;;. Letby, by, bs € R3 span the unit cell.
Then we can write every vectere R? in this basis, i.e.r = z1b1 + z2by + z3bs,
wherex = (21,72, 23)7 € R3 is the vector of coordinates efwith respect to the basis
{b1, by, bs}.

The real functionp(r), r € R3, describing the electron density distribution in the
crystal, has three linearly independent periods corredipgrto the length of the unit
cell's edges, i.ep(r) = p(r + k1 - by + ko - bo + k3 - bs), k1, ko, k3 € Z. This means,

if we know the electron density distribution’s values in tirét cell, we know its values
in the whole crystal, due to periodicity.

For the vector of coordinates= (x1, 2, z3) the electron density function has integer
periods in all three directions, i.(x) = p(x+k), vx € V,Vk € Z3. Avectorr € R?

is inside the unit cell ifik € V' = [0,1)3.
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(a) Unitcell (b) Crystal

Fig. 1: Unit cells building a crystal: a) a unit cell, b) crystal built of unit cells

3 The phase problem

We are searching for the electron density distribuf¢x) over the crystal. Due to the
crystal structurep is a periodic function and therefore can be developed irfousier
series[1, 4]

p(x) = Z F(h)exp(—2mi(h-x)), x € V. (1)



The Fourier coefficient®' (h), h € Z3, which are calledtructure factorsn crystallog-
raphy, are given by the formula

F(h) = /p(x) exp(2mi(h - x))dx. 2
v

Since the structure factors are complex numbers, they camitien as
F(h) = F(h)exp(i¢(h)), ©)

whereF'(h) = |F(h)| is themagnitudeandy(h) € [0, 27| thephase

The only experimental data we get in X-ray-crystallographg the reflection intensi-
ties. The intensity (h) of a reflection is proportional to the magnitude of the sqdare
structure factors, with a known constant of proportioyglie.,C-I(h) = |[F(h)|?,C €

R. Thus, all we can calculate from our experimental data arstitucture factor magni-
tudes. The phase information is lost and must be restorethigy means. This is called
the phase problem

4 The electron density distribution on a grid

4.1 Grid electron density

Instead of calculating the electron density distributinrthe whole unit cell, we will
work on a grid. Using discrete Fourier transforms we willrttealculate electron den-
sities at the grid points. The chosen division numbers atbaginit-cell axes represent
the resolution of the electron density map we are searcloing f
Consider a gridil = [0, M; — 1] x [0, My — 1] x [0, M5 — 1] C Z3, whereM =
M;MsMs is the total number of grid points. L& be the diagonal matritMl =
diag(M., M2, Ms), My, M2, M3 € N. Given the valueg; of a periodic functionf on
the grid pointg, i.e.,

%= G g ) A= Gnids) el (4)
thethree dimensional discrete Fourier transfotf calculates the Fourier coefficients
of a trigonometric polynomial interpolatinfjin these grid points [6]:

1 . 1.
F(h) = i Z yiexp(2mi(h - M™%j)), Vh € II. (5)
jenr
The valuesgy;, j € II, can be recovered from the Fourier coefficiefigh), h € I7, by
theinverse discrete Fourier transform

yi= Y F(h)exp(—2mi(h-M"j)), Vj € IT. (6)
hell



(a) Protein (b) Discretisation
Fig. 2: Discretisation of a protein: a) Protein, b) Protein discretisation

The values of the electron density functiefx), x € V at the grid points are described
by thegrid electron density functiop, (j) = p(M™'j). We define thegrid structure
factor F,(h) by the discrete Fourier transform

1 . . 1,
Fy(h) = 52> peli) exp(2mi(h - M~1j)), Vh € II. (7)
jen
If we know the grid structure factors, we can restore the giggtron densities
pa(3) =Y Fy(h)exp(—2mi(h-M™'j)), Vj € 11, (8)
hell

using the inverse discrete Fourier transform.

4.2 Structure factors vs. grid structure factors

In order to clarify the relation between the structure festand the grid structure fac-
tors, we start with equation (7) and use (1), see also [5]:

Vee 1. . 1,
VeenF () = =70 57 p(M'j) exp(2ri(h - M)
jerr

= LS (Y F(p) exp(~2ri(p - (M~1j)))) - exp(2ri(h - M)
M

jeIl pez3
= LS F0) Y exp2ri((h - p) - M) = 3 B+ M)
pEeZ? jenr kez3

The last equation holds due to

. 1. M, if h—p =Mk, fork € 73
> _exp (2 ((h—p) M 1j)) = {0, othervvri)se.
jerm

4



IntroducingR(h) = Vi F(h + Mk) we can write
“ kezs\{0}
F(h) R(h)
F,(h) = + —. 9
g( ) Vcell M ( )

The value ofR(h) depends on the magnitudes and phases of all structuredaatdris
generally unknown. But, it may be negligibly small if thed)is fine enough and if the
indexesh are relatively small in comparison with the grid dimensio®sll, it may be

- . oo M, M. M.
significant if one of the indices is close takl, 72 or 73 cf. [2].

4.3 Inequalities for the grid electron density values

Using (7) we can obtain grid density valuges(j) from the grid structure facto8, (h)
by solving the system of equations

Zpg exp(2mi(h - M~1j)), Vh e II. (10)
JEH

This equation system would be lineardg(j) if the grid structure factors were known.
Next we use (9) to relate the unknown grid structure fackgyéh) to the true structure
factorsF(h), whose magnitude can be observed in the X-ray experimemenGn
upper boundR(h)| < £;(h), Vh € IT, we get the following system of inequalities for
the grid density function:

M
Veenl

|3 pol)exp(@rith- M7Y) = ZF(h)| < ea(h), Vhe T (11)

jeIr

5 Recovering the phases

We will now deduce further constraints restricting the jjassphases of the structure
factorsF (h). Here, we have to distinguish between centric and acermflieations.

5.1 Symmetries

We say that the density distributigrn(x) displays the symmetries of a space group
I'={(Ry,t,)}2%", nsym € N, with R, being a rotation matrix ant, a translation

v=1

vector if the following holds [9]:
p(Ryx+1t,) = p(x),¥x € R, Vv € {1,...,ngym} (12)
From (12) and (2) we can derive the following symmetries Ifar $tructure factors [8]:
F(h) = exp(2mi(h - t,)) F(RZh), Vh € IT,Yv € {1,...,ngym}. (13)

If RIh = —h for somev, h is calledcentric reflectionotherwise it is calledcentric



5.2 Centric reflections

Using (13) and the Hermitian symmetB(—h) = F(h) of the structure factors, we
obtain the following phase restrictions for centric refieas:

if R7h = —h thenp(h) = ¥(h) or p(h) = ¢(h) + 7 with ¢(h) = w(h - t,). (14)

So, if the reflection is centric, only two values of the phagéy) or ¢(h) + =, with
¥(h) being known, are possible. Thus, we can introduce a newhladgh) € {0, 1},
representing the phase ambiguity. In our inequality sygtel), we can replacF (h):

F(h) = F(h) exp(ip(h)) = F(h)(2a(h) — 1) exp(itp(h)). (15)

Taking real and imaginary parts, this results in the follogvinequalities for centric
reflectionsh € II:

|3 cos2n(h - M~9)p, 3) — (20(h) ~ 1)

F(h) cos p(h)| < &1(h), (16)

e Veetr
| > sin(2n(h - M19)p,(3)  (2a(h) - 1) F(W)sing(h)| < &1 (h). @7)
jEH ce

Thus the inequalities become linearif(j) anda(h) if the structure factor magnitudes
F(h) are known.

5.3 Acentric reflections

For the acentric reflections, the phase can take any value (rto 27. [2] suggests

for this case to restrict the phase of the structure factant of four possible values

i%, i%r. Introducing two new variables(h), 5(h) € {0, 1} and taking the real and

imaginary part leads to the following inequalities for arerreflectionsh € IT:

|3 cosna- MT))py ) — (20() — Dy F) 2| <) (18)
jeI ce
|3 sinCm(h- MC)p, ) — (26(0) ~ 1) F) 2| < <. (19)
jerr ce

The errore(h) is given bye(h) = e1(h) + e2(h). Hereea(h), introduced by the

M ey,

li f the ph I b timat < —
sampling of the phase value can be estimateghlol) < N

6 Constraint-based modeling of the phase problem

6.1 Constraint system

In the context of direct phasing, it may be sufficient to findimaby envelopeof the
regarded molecules, i.e., a binary function representiegsawhere the electron density



is above a certain level [2]. Using this idea, we may repléeeunknownsp,(j) by
binary variables; € {0,1}, for each grid poin§ € II. The value ofz; should be 1 if
the electron density, (j) is above a certain level and 0 otherwise, so the solutioneof th
problem provides a binary envelope of the regarded molscule

We end up with a system of linear inequalities in 0-1 varialfler representing the
electron density values at grid points. We use the followintations (the superscripts
R and! stand for the real and imaginary part resp.)

aff(h) = cos(2r(h- M™'j)), af (h) = sin(2r(h - M™'j)), (20)

For centric reflections, we set

yn = yn = a(h), (21)
b = 25 F(h) cosy(h), b, = 2xF(h)sine(h), (22)
et = kF(h) cos(h), ¢ = xF(h)sinvy(h), (23)

and for acentric reflections

yif = a(h), yi = B(h), (24)
bl = 25F(h)2Y/2, bl = 2kF(h)2'/2, (25)
ot = kF(M)27Y2, ¢l = kF(h)271/2. (26)

Herex > 0 is a scaling factor reflecting that the magnitudé®®(h) we get from the
analysis of the diffraction pattern correspond to a reaited® density distribution, and
not to a binary one [2].

To further simplify, we will write

AR(h,z,y(h) = af'(h)z — (il — o), (27)
jern

Al(h,z,y(h) =) aj(h)z — (b, — cfy) - (28)
jenn

Then our binary variables, ¥, y{, with j, h € IT have to satisfy
A% (h, 2,y (h))| < en and|A’ (b, z,y(h))| < en, Yh € 11, (29)

wherez;, = ¢ (h) for centric andsy, = ¢(h) for acentric reflections.

6.2 Objective function

One possibility to work with the inequality system (29) isapply a penalty method.
Whenevei A% (h,z,y(h))| > en, we include| A% (h, z, y(h))| as a penalty term, sim-
ilarly for |Af(h, z, y(h))|. This can be modelled as a mixed-integer optimisation prob-
lem with the help of additional variableg, ri,, h € II representing the penalties:



min Z (rf + ) (30)

hell
subjectto 0<rf, 0<rL, VYhell (31)
—ep — 71t < AR(h,z,y(h)) <ep + 1, Vhe I, (32)
—en — 1L < A'(h,z,y(h)) <ep+ri, Vhell (33)
Zi, 9l yih € {0,1}, Vh,je Il (34)

7 Ongoing and further work

In this paper, we have described for a constraint programanidience the basics of our
constraint-based approach to the phase problem in X-ratadtggraphy. Preliminary
computational experiments and a crystallographic disonss the results can be found
in [2]. In this earlier work, we used the local search pseBdolean solver VBATOIP
[71, which was efficient only for a very small grid siz&X 6 x 6 or 8 x 8 x 8). To increase
performance, we are currently experimenting with statéhefart integer programming
and pseudo-Boolean solvers that have been developed it fazag's.

Another line of research consists in modeling differentrgetsic properties of crystals.
This results in new constraints which can be added to the mivderder to increase
the quality of the solutions. One such constraint is the eotivity constraint stating
that the number of connected components in the binary epedias to be less or equal
to the number of molecules in the unit cell [3]. A correspamginteger programming
formulation has been developed and is currently beingdeste
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