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Abstract. X-ray crystallography is one of the main methods to establish the
three-dimensional structure of biological macromolecules. In an X-ray experi-
ment, one can measure only the magnitudes of the complex Fourier coefficients
of the electron density distribution under study, but not their phases. Theprob-
lem of recovering the lost phases is called the phase problem. Building on earlier
work by Lunin/Urzhumtsev/Bockmayr we describe a constraint-based approach
to the phase problem. We introduce the mathematical foundations, derivea basic
integer programming formulation, and discuss possible refinements by including
additional constraints.

1 Introduction

Knowledge about the three-dimensional structure of biological macromolecules is an
essential foundation of structural biology and biotechnology. In X-ray crystallography
the arrangement of atoms within a crystal is determined froma three-dimensional repre-
sentation of the electron density. From X-ray experiments one getsdiffraction datade-
pending on the molecular structure, i.e., the intensities of reflections of X-rays diffracted
by the crystal. X-rays are scattered exclusively by the electrons in the atoms, so one is
searching for a relation between the measured intensities of the beams diffracted at the
object in question and the crystal structure, which can be described by the electron den-
sity distribution. Electron density represents probabilistically where electrons can be
found in the molecule. The first step on the way to estimate a crystal’s electron density
is the collection of crystallographic data. This is done with the help of adiffractometer
or a synchrotron: an X-ray beam is diffracted by the crystal in a discrete set of directions
and the reflection intensities are measured. With the help ofthis diffraction data and the
usage of mathematical as well as experimental methods, an electron density map can
be derived.Direct methodsuse mathematical techniques to compute an electron density
map from the diffraction data without any further experiments. The main problem here
is thephase problem: experiments provide only the intensities of the X-rays diffracted
in different directions and so the electron density magnitudes can be calculated, whereas
the information about the phase shift is lost.
Lunin, Urzhumtsev and Bockmayr [2] proposed a 0-1 integer programming approach
to direct phasing. As a research contribution to a crystallographic journal, this article
is not easily accessible. In the present paper, we introducethis work to the constraint
programming community. We describe the mathematical foundations, derive step by



step the basic integer programming formulation, and discuss possible refinements by
including additional constraints.

2 Basic terminology

Vectors, matrices as well as higher-dimensional arrays will be noted with bold letters,
x · y denotes the scalar product of two vectorsx andy.
Every crystal consists of identical molecules, resp. complexes of molecules strictly or-
dered in all three dimensions. This means that we can find a parallelepiped containing
such a complex of molecules which builds up the whole crystalif it is repeatedly stacked
together in all three dimensions. This parallelepiped, in general, is not unique. It is de-
fined by the length of its edges as well as the angles between them and is calledunit
cell. These base units, translated in three dimensions, build upacrystal lattice.
We will denote the unit cell’s volume withVcell. Letb1,b2,b3 ∈ R

3 span the unit cell.
Then we can write every vectorr ∈ R

3 in this basis, i.e.,r = x1b1 + x2b2 + x3b3,
wherex = (x1, x2, x3)

T ∈ R
3 is the vector of coordinates ofr with respect to the basis

{b1,b2,b3}.
The real functionρ(r), r ∈ R

3, describing the electron density distribution in the
crystal, has three linearly independent periods corresponding to the length of the unit
cell’s edges, i.e.,ρ(r) = ρ(r + k1 ·b1 + k2 ·b2 + k3 ·b3), k1, k2, k3 ∈ Z. This means,
if we know the electron density distribution’s values in theunit cell, we know its values
in the whole crystal, due to periodicity.
For the vector of coordinatesx = (x1, x2, x3) the electron density function has integer
periods in all three directions, i.e.ρ(x) = ρ(x+k),∀x ∈ V,∀k ∈ Z

3. A vectorr ∈ R
3

is inside the unit cell iffx ∈ V = [0, 1)3.

(a) Unit cell (b) Crystal

Fig. 1: Unit cells building a crystal: a) a unit cell, b) crystal built of unit cells

3 The phase problem

We are searching for the electron density distributionρ(x) over the crystal. Due to the
crystal structure,ρ is a periodic function and therefore can be developed into aFourier
series[1,4]

ρ(x) =
1

Vcell

∑

h∈Z3

F(h) exp(−2πi(h · x)), x ∈ V. (1)
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The Fourier coefficientsF(h),h ∈ Z
3, which are calledstructure factorsin crystallog-

raphy, are given by the formula

F(h) =

∫

V

ρ(x) exp(2πi(h · x))dx. (2)

Since the structure factors are complex numbers, they can bewritten as

F(h) = F (h) exp(iϕ(h)), (3)

whereF (h) = |F(h)| is themagnitudeandϕ(h) ∈ [0, 2π[ thephase.
The only experimental data we get in X-ray-crystallographyare the reflection intensi-
ties. The intensityI(h) of a reflection is proportional to the magnitude of the squared
structure factors, with a known constant of proportionality, i.e.,C ·I(h) = |F(h)|2, C ∈
R. Thus, all we can calculate from our experimental data are the structure factor magni-
tudes. The phase information is lost and must be restored by other means. This is called
thephase problem.

4 The electron density distribution on a grid

4.1 Grid electron density

Instead of calculating the electron density distribution in the whole unit cell, we will
work on a grid. Using discrete Fourier transforms we will then calculate electron den-
sities at the grid points. The chosen division numbers alongthe unit-cell axes represent
the resolution of the electron density map we are searching for.
Consider a gridΠ = [0,M1 − 1] × [0,M2 − 1] × [0,M3 − 1] ⊆ Z

3, whereM =
M1M2M3 is the total number of grid points. LetM be the diagonal matrixM =
diag(M1,M2,M3), M1,M2,M3 ∈ N. Given the valuesyj of a periodic functionf on
the grid pointsj, i.e.,

yj = f(
j1

M1

,
j2

M2

,
j3

M3

), j = (j1, j2, j3) ∈ Π (4)

the three dimensional discrete Fourier transformF calculates the Fourier coefficients
of a trigonometric polynomial interpolatingf in these grid points [6]:

F(h) =
1

M

∑

j∈Π

yj exp(2πi(h · M−1j)), ∀h ∈ Π. (5)

The valuesyj, j ∈ Π, can be recovered from the Fourier coefficientsF(h),h ∈ Π, by
the inverse discrete Fourier transform:

yj =
∑

h∈Π

F(h) exp(−2πi(h · M−1j)), ∀j ∈ Π. (6)
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(a) Protein (b) Discretisation
Fig. 2: Discretisation of a protein: a) Protein, b) Protein discretisation

The values of the electron density functionρ(x), x ∈ V at the grid points are described
by thegrid electron density functionρg(j) = ρ(M−1j). We define thegrid structure
factorFg(h) by the discrete Fourier transform

Fg(h) =
1

M

∑

j∈Π

ρg(j) exp(2πi(h · M−1j)), ∀h ∈ Π. (7)

If we know the grid structure factors, we can restore the gridelectron densities

ρg(j) =
∑

h∈Π

Fg(h) exp(−2πi(h · M−1j)), ∀j ∈ Π, (8)

using the inverse discrete Fourier transform.

4.2 Structure factors vs. grid structure factors

In order to clarify the relation between the structure factors and the grid structure fac-
tors, we start with equation (7) and use (1), see also [5]:

VcellFg(h) =
Vcell

M

∑

j∈Π

ρ(M−1j) exp(2πi(h · M−1j))

=
1

M

∑

j∈Π

(
∑

p∈Z3

F(p) exp(−2πi(p · (M−1j)))) · exp(2πi(h · M−1j))

=
1

M

∑

p∈Z3

F(p)
∑

j∈Π

exp(2πi((h − p) · M−1j)) =
∑

k∈Z3

F(h + Mk).

The last equation holds due to

∑

j∈Π

exp
(

2πi
(

(h − p) · M−1j
))

=

{

M, if h − p = Mk, for k ∈ Z
3

0, otherwise.
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IntroducingR(h) =
M

Vcell

∑

k∈Z3\{0}

F(h + Mk) we can write

Fg(h) =
F(h)

Vcell
+

R(h)

M
. (9)

The value ofR(h) depends on the magnitudes and phases of all structure factors and is
generally unknown. But, it may be negligibly small if the grid is fine enough and if the
indexesh are relatively small in comparison with the grid dimensions. Still, it may be

significant if one of the indices is close to
M1

2
,
M2

2
or

M3

2
, cf. [2].

4.3 Inequalities for the grid electron density values

Using (7) we can obtain grid density valuesρg(j) from the grid structure factorsFg(h)
by solving the system of equations

Fg(h) =
1

M

∑

j∈Π

ρg(j) exp(2πi(h · M−1j)), ∀h ∈ Π. (10)

This equation system would be linear inρg(j) if the grid structure factors were known.
Next we use (9) to relate the unknown grid structure factorsFg(h) to the true structure
factorsF(h), whose magnitude can be observed in the X-ray experiment. Given an
upper bound|R(h)| ≤ ε1(h), ∀h ∈ Π, we get the following system of inequalities for
the grid density function:

∣

∣

∣

∑

j∈Π

ρg(j) exp(2πi(h · M−1j)) − M

Vcell
F(h)

∣

∣

∣
≤ ε1(h), ∀h ∈ Π (11)

5 Recovering the phases

We will now deduce further constraints restricting the possible phases of the structure
factorsF(h). Here, we have to distinguish between centric and acentric reflections.

5.1 Symmetries

We say that the density distributionρ(x) displays the symmetries of a space group
Γ = {(Rν , tν)}nsym

ν=1
, nsym ∈ N, with Rν being a rotation matrix andtν a translation

vector if the following holds [9]:

ρ(Rνx + tν) = ρ(x),∀x ∈ R
3,∀ν ∈ {1, . . . , nsym}. (12)

From (12) and (2) we can derive the following symmetries for the structure factors [8]:

F(h) = exp(2πi(h · tν)) F(RT
ν h), ∀h ∈ Π,∀ν ∈ {1, . . . , nsym}. (13)

If RT
ν h = −h for someν, h is calledcentric reflection, otherwise it is calledacentric.
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5.2 Centric reflections

Using (13) and the Hermitian symmetryF(−h) = F(h) of the structure factors, we
obtain the following phase restrictions for centric reflections:

if RT
ν h = −h thenϕ(h) = ψ(h) or ϕ(h) = ψ(h) + π with ψ(h) = π(h · tν). (14)

So, if the reflection is centric, only two values of the phase,ψ(h) or ψ(h) + π, with
ψ(h) being known, are possible. Thus, we can introduce a new variableα(h) ∈ {0, 1},
representing the phase ambiguity. In our inequality system(11), we can replaceF(h):

F(h) = F (h) exp(iϕ(h)) = F (h)(2α(h) − 1) exp(iψ(h)). (15)

Taking real and imaginary parts, this results in the following inequalities for centric
reflectionsh ∈ Π:

∣

∣

∣

∑

j∈Π

cos(2π(h · M−1j))ρg(j) − (2α(h) − 1)
M

Vcell
F (h) cos ψ(h)

∣

∣

∣
≤ ε1(h), (16)

∣

∣

∣

∑

j∈Π

sin(2π(h · M−1j))ρg(j) − (2α(h) − 1)
M

Vcell
F (h) sin ψ(h)

∣

∣

∣
≤ ε1(h). (17)

Thus the inequalities become linear inρg(j) andα(h) if the structure factor magnitudes
F (h) are known.

5.3 Acentric reflections

For the acentric reflections, the phase can take any value from 0 to 2π. [2] suggests
for this case to restrict the phase of the structure factor toone of four possible values

±π

4
, ±3π

4
. Introducing two new variablesα(h), β(h) ∈ {0, 1} and taking the real and

imaginary part leads to the following inequalities for acentric reflectionsh ∈ Π:

∣

∣

∣

∑

j∈Π

cos(2π(h · M−1j))ρg(j) − (2α(h) − 1)
M

Vcell
F (h)

1√
2

∣

∣

∣
≤ ε(h), (18)

∣

∣

∣

∑

j∈Π

sin(2π(h · M−1j))ρg(j) − (2β(h) − 1)
M

Vcell
F (h)

1√
2

∣

∣

∣
≤ ε(h). (19)

The errorε(h) is given byε(h) = ε1(h) + ε2(h). Here ε2(h), introduced by the

sampling of the phase value can be estimated byε2(h) ≤ 1√
2

M

Vcell
F (h).

6 Constraint-based modeling of the phase problem

6.1 Constraint system

In the context of direct phasing, it may be sufficient to find a binary envelopeof the
regarded molecules, i.e., a binary function representing areas where the electron density

6



is above a certain level [2]. Using this idea, we may replace the unknownsρg(j) by
binary variableszj ∈ {0, 1}, for each grid pointj ∈ Π. The value ofzj should be 1 if
the electron densityρg(j) is above a certain level and 0 otherwise, so the solution of the
problem provides a binary envelope of the regarded molecules.
We end up with a system of linear inequalities in 0-1 variables for representing the
electron density values at grid points. We use the followingnotations (the superscripts
R andI stand for the real and imaginary part resp.)

aR
j (h) = cos(2π(h · M−1j)), aI

j (h) = sin(2π(h · M−1j)), (20)

For centric reflections, we set

yR
h = yI

h = α(h), (21)

bR
h = 2κF (h) cos ψ(h), bI

h = 2κF (h) sin ψ(h), (22)

cR
h = κF (h) cos ψ(h), cI

h = κF (h) sin ψ(h), (23)

and for acentric reflections

yR
h = α(h), yI

h = β(h), (24)

bR
h = 2κF (h)2−1/2, bI

h = 2κF (h)2−1/2, (25)

cR
h = κF (h)2−1/2, cI

h = κF (h)2−1/2. (26)

Hereκ ≥ 0 is a scaling factor reflecting that the magnitudesF obs(h) we get from the
analysis of the diffraction pattern correspond to a real electron density distribution, and
not to a binary one [2].
To further simplify, we will write

AR(h, z,y(h)) =
∑

j∈Π

aR
j (h)zj −

(

bR
h yR

h − cR
h

)

, (27)

AI(h, z,y(h)) =
∑

j∈Π

aI
j (h)zj −

(

bI
hyI

h − cI
h

)

. (28)

Then our binary variableszj, y
R
h , yI

h, with j,h ∈ Π have to satisfy

|AR(h, z,y(h))| ≤ εh and|AI(h, z,y(h))| ≤ εh, ∀h ∈ Π, (29)

whereεh = ε1(h) for centric andεh = ε(h) for acentric reflections.

6.2 Objective function

One possibility to work with the inequality system (29) is toapply a penalty method.
Whenever|AR(h, z,y(h))| > εh, we include|AR(h, z,y(h))| as a penalty term, sim-
ilarly for |AI(h, z,y(h))|. This can be modelled as a mixed-integer optimisation prob-
lem with the help of additional variablesrR

h , rI
h,h ∈ Π representing the penalties:
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min
∑

h∈Π

(rR
h + rI

h) (30)

subject to 0 ≤ rR
h , 0 ≤ rI

h, ∀h ∈ Π (31)

−εh − rR
h ≤ AR(h, z,y(h)) ≤ εh + rR

h , ∀h ∈ Π, (32)

−εh − rI
h ≤ AI(h, z,y(h)) ≤ εh + rI

h, ∀h ∈ Π (33)

zj, y
R
h , yI

h ∈ {0, 1}, ∀h, j ∈ Π (34)

7 Ongoing and further work

In this paper, we have described for a constraint programming audience the basics of our
constraint-based approach to the phase problem in X-ray crystallography. Preliminary
computational experiments and a crystallographic discussion of the results can be found
in [2]. In this earlier work, we used the local search pseudo-Boolean solver WSATOIP

[7], which was efficient only for a very small grid size (6×6×6 or8×8×8). To increase
performance, we are currently experimenting with state-of-the-art integer programming
and pseudo-Boolean solvers that have been developed in recent years.
Another line of research consists in modeling different geometric properties of crystals.
This results in new constraints which can be added to the model, in order to increase
the quality of the solutions. One such constraint is the connectivity constraint stating
that the number of connected components in the binary envelope has to be less or equal
to the number of molecules in the unit cell [3]. A corresponding integer programming
formulation has been developed and is currently being tested.
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