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Abstract. We present a hybrid system that combines local search techniques and
constraint solving. We apply it to the ab-initio protein structure prediction prob-
lem, modeled in the Face Centered Cubic Lattice with a pairwise contact energy
function. In the literature, the problem is successfully solved using constraint pro-
gramming for proteins with length up to 160 using the HP energy model. In the
case of more complex models, w.r.t. energy and structure, current techniques can
not be easily extended and the constraint approach is not applicable to proteins
of length over 100. The idea described in this paper is based on the alternation
of CSP solving phases and local search phases that modify the predicted spatial
conformation. The approach is implemented and tested in Gecode and EasyLocal
with encouraging results.

1 Introduction

The protein structure prediction problem is recognized to be a challenging problem for
computational biology. Even with strong approximations of the spatial model (simple
discrete lattices) and of the energy model (simple contact energy function), the problem
is proved to be NP-hard. Nevertheless, minimizing simple hydrophobic-polar energy
function and using the discrete lattice model FCC (Face Centered Cube), Backofen
and Will solve it in seconds for proteins of length 160 and more [1]. Moreover, other
researchers (e.g. [9]) approximated the solution to the same problem using local search
and refined meta-heuristics.

More complex models have been proposed for the protein structure prediction prob-
lem. In [3] the problem have been formalized in the FCC lattice using a 20x20 energy
matrix (different contributions for each pair of amino acids) and using information from
secondary structure (known and/or predicted presence of α-helices and β-strands). The
original implementation in SICStus Prolog CLP(FD) evolved in various directions (e.g.,
[4]) and an ad-hoc constraint solver on lattices (COLA) has been developed [5]. How-
ever, this approach is computationally infeasible when applied to the prediction of pro-
tein structures with more than hundred amino acids. Only the presence of other kind of
partial information (e.g., known folds for sub-blocks picked from the protein data bank)
can speed up significantly the search.

Extended models do not translate into an easy extension of the core computation
idea used in [1]. This becomes unapplicable since the presence of different kinds of



contacts generates an explosion of the number of possible cores. Moreover, the def-
inition of optimal core does not account for any complex structural constraints (e.g.
secondary structure). Any admissible conformation containing further structural con-
straints often can only be obtained from a suboptimal core, namely a set of contacts less
packed in the space. Since the number of such cores is exponential in the number of
cavities in the volume, it is infeasible to precompute them in advance.

In this paper we would like to mix constraint-based and local-search techniques to
improve the performance of the above mentioned (FCC 20x20) constraint-based tools.
This hybrid system combines local search techniques and constraint solving. During the
computation we consider the notion of conformation, which is a protein representation
mapped to the spatial domain (i.e., FCC). Each conformation represents a possible state
of a protein and it is associated to a particular energy, directly derived from the applica-
tion of the pairwise 20x20 energy function. Each conformation may be constrained to
other structural properties (see [3] for a complete list).

The presence of secondary structure information, obtained through neural network
prediction, is necessary in order to predict more realistic conformations. In particular,
it is shown that the contact energy function is not sufficient to reproduce local arrange-
ments such as helices and/or sheets. The secondary structure information compensates
the roughness of the energy model in use. Another advantage from using secondary
structure constraints is that the search space reduces, since rigid blocks with no internal
degree of freedom are imposed in the conformation.

The idea is to alternate CSP solving phases to local search phases. In the former,
given a conformation as input, a CSP is built in order to search a spatially close con-
formation which respects every structural constraint (e.g., two amino acids may not
overlap).

In the latter phase, the conformation is altered by means of a set of moves, which
rotate part of the protein using a specific amino acid as pivot of the rotation. The part
of the protein rotated is weakly allowed to change shape, in order to satisfy the overall
conditions (i.e. the block is not kept fully rigid).

The platform is implemented and tested in Gecode and EasyLocal. Gecode is a
recent C++ constraint solving platform with excellent performances [7], while EasyLo-
cal++ is an object oriented, general and configurable, local search tool [6]. We com-
pared the pure constraint programming approach and the one that combines constraint
programming and local search on 12 proteins with different length and structure: even
without developing particular combination strategies, the conformations found by the
hybrid method improve those found with the pure CP approach.

2 Modeling PF in Gecode

As first test, we encoded in GECODE the same model presented in [3], using some
enhanced representations for rigid substructures like helices and sheets [4]. We briefly
summarize here the essential aspects of the encoding, which is based on the schema
presented in [2]. The interested reader can refer to the just cited references.

The Primary structure of a protein is a sequence s = s1 . . . sn, where each si is
an amino acid identified by a letter of an alphabet A, |A| = 20. The 3D conformation
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of the protein is named Tertiary structure. Tertiary structures often contain Secondary
Structure elements (e.g., α-helices and β-sheets).

We model the protein on the FCC lattice, namely, each amino acid i occupies a
position ω(i) in the lattice. FCC points are points 〈x, y, z〉 ∈ N3 such that x+ y + z is
even. Two FCC points 〈x1, y1, z1〉 and 〈x2, y2, z2〉 are

– contiguous (or next) iff |x1 − x2| ≤ 1, |y1 − y2| ≤ 1, |z1 − z2| ≤ 1, |x1 − x2|+
|y1 − y2|+ |z1 − z2| = 2.

– in contact iff they are not contiguous and |x1− x2|+ |y1− y2|+ |z1− z2| = 2.

The choice of using the FCC lattice has been often adopted in thermodynamical
studies of stability of small proteins (e.g. [10]) and this lattice is able to represent with
a certain degree of accuracy the typical backbone angles and the shape of secondary
structures. A folding of s is a function ω : {1, . . . , n} → D such that:

1. next(ω(i), ω(i+ 1)) for i = 1, . . . , n− 1, and
2. ω(i) 6= ω(j) for i 6= j (namely, ω introduces no loops).

The second property is encoded using the well known alldifferent constraint,
after a conversion from 3D coordinates to 1D FD variables. The conversion is based on
an enumeration of the 3D lattice, using a relation of the kind V = xM2 + yM + z,
whereM is a sufficiently large number. As shown in [5], using distinct FD variables for
each coordinate hampers the propagators effectiveness and thus the alldifferent
constraint has a limited effect. However, we based this approach on FD variables, in-
stead of 3D box domains an in [5], in order to ease the interaction with GECODE.
Let Pot be a 20x20 matrix associating an energy contribution measure to each pair of
amino acids types si and sj . The contribution is accounted for when ω(i) and ω(j) are
in contact.

The protein structure prediction problem can be modeled as the problem of finding
the folding ω of S such that the following energy cost function is minimized:

E(ω, S) =
∑

1≤i<n

∑
i+2≤j≤n

contact(ω(i), ω(j)) · Pot(si, sj).

Let us observe that in the FCC each point is adjacent to 12 neighboring points.
However, as explained in [3], we add some extra constraints (e.g. angles) that restrict
to 90◦ and 120◦ the bend angles between three consecutive amino acids.

secondary info constraints encode the Secondary Structure information in the
program. The secondary structure is described by a list of elements of the type:

helix(i, j): si, si+1, . . . , sj form an α-helix. The modeling of α-helices builds on the
observation that it is sufficient to constrain the first 4 amino acids of the helix to
guarantee its shape—the shape can then be propagated to the rest of the helix via
simple vector equalities [4].

strand(i, j): si, si+1, . . . , sj are in a β-strand. Similar to the case above.
ssbond(i, j): presence of a disulfide bridge between si and sj . If 〈x1, y1, z1〉 and
〈x2, y2, z2〉 are the variables for the positions of the two amino acids, then we set
the constraints |x1 − x2| ≤ 4, |y1 − y2| ≤ 4, |z1 − z2| ≤ 4.
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We summarized each protein main features in a file format. Every protein is de-
scribed by: its ID (according to the name used in the protein data bank), the sequence
S of amino acids and its secondary structure information (if any).

We run some tests in order to compare the ability of FD solvers to handle the CSP
described. We removed on purpose every heuristics and search optimizations described
in [4, 5] and we noticed that with the same search parameters Gecode outperforms the
running time of the equivalent SICStus Prolog code by a rather constant speedup. This
search as well as the hybrid approach produce an output file that can be handled by stan-
dard molecular viewers. Complete code is available at www.dimi.uniud.it/dovier/PF/LS.

3 Local Search Moves

In this section we describe the Local Search perturbations that form the second phase
in the hybrid technique. The local modifications of a conformation are defined by a set
of moves that maps a conformation into another one.

3.1 The pivot move

A convenient move we studied is the pivot move, which is proved to be ergodic [8]. The
idea of this class of moves is to keep unchanged the first part of the protein (for example
the first half) and to rotate the second one. The second part should be rotated in the FCC
space as a rigid block while looking for a better associated energy cost. A pivot move
is identified by:

– the pivot amino acid (si), the last amino acid of the part that remains unchanged;
– a firstfixed amino acid (sj), that identifies the rotating part of the protein (thus
i < j). Below we explain why we require i+ 1 < j.

– some rigid block constraints, that constrain the position of the amino acids of the
moving part of the protein (from sj to sn).

A good move is influenced by the selection of the pivot. In particular is preferable to
select an amino acid not involved in α-helices and β-strands: in fact such amino acids
are in the middle of a well-structured section of the protein that must not be modified
(e.g. it is not possible to break apart a helix).

The firstfixed amino acid identifies a section of the the protein (between si and sj)
completely free to move in the FCC lattice (only structural constraints are active, e.g.
next). A firstfixed amino acid too close to the pivot (e.g. sj = si + 1) limits the pos-
sible rotations of the rigid part of the protein, due to the non overlap constraints and to
the poor degree of freedom of the subsequence between si and sj . As this subsequence
is enlarged, the possible accommodations of the subsequent rigid block increase expo-
nentially. However, a firstfixed too far from the pivot causes the exploration of the huge
search space for the subsequence si . . . sj .

Lastly, the rigid block constraints must be selected carefully. They are a set of dis-
tance constraints between all pairs of amino acids in the rotating block as in the in-
put conformation. The constraints can be relaxed (e.g. distances within a range w.r.t.
the original distance, reduced number of pairs) and this case allows multiple solutions
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which are spatially close to the original conformation. Once again, the degree of relax-
ation influences the search space and thus the solution times. On one hand, an exact
rigid block set of constraints reproduces exactly the block, but, once rotated, it is not
tolerant to local modifications of the block to avoid some overlaps to the first part of the
protein. On the other hand the complete absence of rigid block constraints (the second
part of the protein is totally free to move in the lattice) causes an inefficient search for
the next conformation and every information about the second part of the protein is
lost. We have experimentally chosen an intermediate approach, where some constraints
between the amino-acids in the rigid block are added (obtaining a semi-rigid block).
Observe that in this way we naturally mix local search and constraint based search.

We performed various preliminary test, to identify the better combination of these
parameters. We decided to select as pivot only the amino acids not involved in α-helices
or β-strands, to select as the firstfixed amino acid the fifth one after the pivot (i.e. sj =
si + 5) and to post distance constraint on the rigid block only between the amino acids
of distance six in the primary structure (reduced number of pairs).

3.2 Pivot move implementation

To implement the pivot move we start from a conformation p of the protein encoded
into a Gecode object (a Gecode::Space object). We create a new Gecode::Space object
representing a protein nextp, where we post all the spatial and structural constraint (FCC
lattice, next, no loops, angles and secondary info constraints). Then we
copy the amino acids s1 . . . si from p to nextp; the amino acids from pivot + 1 to
firstfixed- 1 of nextp (si+1 . . . sj−1) are only subject to structural constraint; then we
post the rigid block constraints on the amino acids of nextp from firstfixed to the last
one (sj . . . sn).

Once the new protein object is created and all these constraints are posted, the
Gecode search routine is launched for nextp. This CP search explores all the possible
conformations (with respect to the constraints posted), trying to reach a folding with a
better energy cost than the one of p. If the search finds such a folding, we iterate the
process, starting from the conformation of the protein reached in nextp.

3.3 The Local Search algorithm

We inserted the implementation of the pivot move into a basic local search algorithm,
using the functionalities provided by the framework EasyLocal++. The main idea of the
algorithm is to start from an admissible conformation obtained as the first solution of
the constraint programming search, then to randomly select a pivot move and to search
a new conformation with better energy, according to the selected move using constraint
programming search.

The CSP search (both for the first solution and for the pivot move) invokes a labeling
with a leftmost variable selection and median value selection. We investigated various
labeling options and observed experimentally that these ones better fit our problem.

The search on a local move has a timeout, that we call moveTimeout (we used a
value of 1 minute); if a new conformation with a better energy is discovered before
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moveTimeout, it is accepted and it becomes the current one. A globalTimeout is se-
lected at the beginning of the execution, so the algorithm iterates until it reaches the
globalTimeout. At the end, the best solution reached is returned. The iteration of the
process depicts a classical hill-climbing algorithm.

When selecting the move, the choice of pivot amino acid determines firstfixed amino
acid and rigid block constraints). As said above the pivot amino acid is randomly se-
lected only among all the amino acids of the protein not involved in α-helices and/or
β-strands. During the random moves exploration, we ensure that the same move is not
tested many times. We need to keep track of the moves already tested, in order to skip
the candidate moves in the history.

Once every move have been tested and no move produces an improvement in the
energy cost, the moveTimeout is multiplied by a constant Inc (we used Inc=2) and the
process is iterated.

4 Results

After preliminary tests performed with the aim of tuning the various parameters (first-
fixed, rigid block constraints, timeouts, search strategies), we tested our hybrid algo-
rithm on 12 proteins of different length and with different secondary structures (the
same used in [5]). For each protein we executed 1 run with the pure CP algorithm and
5 runs with the hybrid approach: the selection of a pivot move is randomly guided, so
different runs may lead to different solutions and we report results on the best run ob-
tained. In Table 1 we report for each protein the search time in minutes and the energy
cost (Ecost) of the best conformation found.

Tests have been performed on a AMD Opteron 280 at 2.2GHz, Linux CentOS ma-
chine with a globalTimeout of 2 hours. We compare the energy cost of the solution
found with the pure constraint programming approach and with the hybrid constraint
programming-local search algorithm. The energy costs do not account for the contribu-
tion of the internal contacts of the secondary structures, since they are constant during
the search process, and thus these results are not comparable to the ones of [3, 4, 5].

We can notice that the energy costs found with the hybrid approach are generally
better than the ones found with the only use of constraint programming. This confirms
our hypothesis that the hybrid approach leads to better solutions in the same amount of
time. With some small proteins the hybrid algorithm stops improving after few minutes:
in this case, it falls into a local minimum and neither increasing the moveTimeout nor
trying different runs can avoid this problem. On the other hand, with some proteins the
pure CP search stops finding better solutions in few minutes, because the search space
to explore is too big and the search diverges. It must be noticed that the energy values
obtained for longer proteins are not yet satisfactory.

Work needs to be done in the local search stage: in fact we noticed that some simple
and useful rotations between contiguous secondary structures are not performed; such
rotations are probably forbidden by the blocks overlap (the rigidity should be be further
relaxed) and by an insufficient number of free amino acids between two contiguous
secondary structures.
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Protein CP CP + LS
ID Length Time Ecost Time Ecost

1EDP 17 15 -12279 1 -12140
1E0N 27 39 -7619 5 -12742
1VII 36 16 -9194 1 -14402
2GP8 40 53 -12472 20 -13501
1ED0 45 7 -10917 8 -14747
1ENH 54 63 -8928 59 -12386

Protein CP CP + LS
ID Length Time Ecost Time Ecost

2IGD 60 70 -7583 87 -16631
1SN1 62 4 -20764 59 -28853
1L6T 78 107 -23883 52 -7117
1HS7 96 30 -5797 1 -2067
1TQG 104 49 -8384 117 -15333
1SA8 105 67 -14219 120 -26443

Table 1. Comparison of the solutions obtained by the two approaches on 12 different proteins.
Timings are expressed in minutes.

5 Future Work and Conclusions

This is an ongoing work. Our aim was to prove that on the PF problem on FCC lattice
with 20x20 energy matrix, the hybrid use of local search and constraint programming
outperforms the only use of constraint programming, in terms of quality of solutions
and execution time. We first encoded a basic PF model on FCC with 20x20 energy
matrix into the constraint programming framework Gecode, without including strong
search heuristics (like the ones used in [4, 5]); then we defined a local search move
(the pivot move) in the local search framework EasyLocal++, in such a way that the
pivot move can interact with the constraint programming model. Our tests confirm that
the hybridization of these techniques leads to better solutions with respect to the pure
constraint programming model.

Now that we have ensured the feasibility of this idea and the goodness of the re-
sults, additional tests and algorithm improvements can be performed. We plan to run
the algorithm on other longer and more complex proteins, to refine the parameters with
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massive testing, if needed. We can also try to run our algorithm with a longer global-
Timeout. Various ideas can be applied to the hybrid algorithm. For example, we plan
to embed into the constraint programming model some already tested heuristics (the
ones used in [4, 5]): this should improve the performance when searching for a new
conformation, and thus speed up the search.

We can refine the local search strategy: the hill-climbing algorithm is very efficient,
but it is a local algorithm; the use of more refined strategies (such as tabu search) could
avoid falls into local minima. We also think to elaborate more complex local search
heuristics and metaheuristics, derivable from the EasyLocal++ framework.

We can speed-up the performance using the COLA solver [5], a constraint solver in
C specifically designed for the Protein folding problem: embedding local search rou-
tines directly into COLA, instead of using Gecode and EasyLocal++ should outperform
the execution time of the present current approach.
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