
Stochastic local search for large-scale instances of

the Haplotype Inference Problem by Parsimony

Luca Di Gaspero1 and Andrea Roli2

1 DIEGM, University of Udine, via delle Scienze 208, I-33100, Udine, Italy
l.digaspero@uniud.it

2 DEIS, University of Bologna, via Venezia 52, I-47023 Cesena, Italy
andrea.roli@unibo.it

Abstract. Haplotype Inference is a challenging problem in bioinformat-
ics that consists in inferring the basic genetic constitution of diploid
organisms on the basis of their genotype. This information allows re-
searchers to perform association studies for the genetic variants involved
in diseases and the individual responses to therapeutic agents.
A notable approach to the problem is to encode it as a combinatorial
problem (under certain hypotheses, such as the pure parsimony crite-
rion) and to solve it using off-the-shelf combinatorial optimization tech-
niques. The main methods applied to Haplotype Inference are either
simple greedy heuristic or exact methods that, at present, are adequate
only for moderate size instances.
In this paper, we present an approach based on the combination of local
search metaheuristics and a reduction procedure based on an analysis of
the problem structure. Results on a set of Haplotype Inference bench-
marks show that this approach achieves a good trade-off between solution
quality and execution time.

1 Introduction

A fundamental tool of analysis to investigate the genetic variations in a popu-
lation is based on haplotype data. A haplotype is a copy of a chromosome of a
diploid organism (i.e., an organism that has two copies of each chromosome, one
inherited from the father and one from the mother).

The collection of haplotypes from the genetic material is not an easy task: in
fact, due to technological limitations it is currently infeasible to directly collect
haplotypes in an experimental way, but rather it is possible to collect genotypes,
i.e., the conflation of a pair of haplotypes. Therefore, haplotypes have to be
inferred from genotypes in order to reconstruct the detailed information and
trace the precise structure of human populations. This process is called Haplotype
Inference and the goal is to find a set of haplotype pairs so that all the genotypes
are resolved.

Current approaches for solving the problem include simple greedy heuris-
tics [1] and exact methods such as Integer Linear Programming [2,3], Semidef-
inite Programming [4,5], SAT models [6] and Pseudo-Boolean Optimization al-
gorithms [7]. These approaches, however, at present seem not to be particularly



adequate for very-large size instances. Conversely, we believe that metaheuristic
(and hybrid) approaches could provide better scalability than exact algorithms.
To the best of our knowledge, the only attempt to employ metaheuristic tech-
niques for the problem is a recently proposed Genetic Algorithm [8]. However,
the cited paper does not report results on real size instances.

In this work we present a metaheuristic approach to tackle the Haplotype
Inference problem by pure parsimony. We introduce the problem in Section 2
and we sketch an analysis of the problem structure. The outcome of the analysis
is a reduction procedure that can be combined with the metaheuristic approach
developed in Section 3 in order to improve the performance of local search.
Experimental results concerning a comparison of our technique against the state-
of-the-art for Haplotype Inference by parsimony are discusses in Section 4.

2 The Haplotype Inference problem

In the Haplotype Inference problem we deal with genotypes, that is, strings of
length m that corresponds to a chromosome with m sites. Each value in the
string belongs to the alphabet {0, 1, 2}. A position in the genotype is associated
with a site of interest on the chromosome (called a SNP: single nucleotide poly-
morphism) and it has value 0 (wild type) or 1 (mutant) if the corresponding
chromosome site is a homozygous site (i.e., it has that state on both copies)
or the value 2 if the chromosome site is heterozygous. A haplotype is a string
of length m that corresponds to only one copy of the chromosome (in diploid
organisms) and whose positions can assume the symbols 0 or 1 according to the
following rules:

g[j] = 0 ⇒ h[j] = 0 ∧ k[j] = 0 (1)

g[j] = 1 ⇒ h[j] = 1 ∧ k[j] = 1 (2)

g[j] = 2 ⇒ (h[j] = 0 ∧ k[j] = 1) ∨ (h[j] = 1 ∧ k[j] = 0) (3)

We say that h is a resolvent of g, and we write h E g, if there exists a
companion haplotype k such that 〈h, k〉 ⊲ g. This notation can be extend to sets
of haplotypes, and we write H = {h1, . . . , hl} E g, meaning that hi E g for all
i = 1, . . . , l, or to sets of genotypes, in this case we write h E A if h E g for all
g ∈ A.

Conditions (1) and (2) require that both haplotypes must have the same
value in all homozygous sites, while condition (3) states that in heterozygous
sites the haplotypes must have different values.

Observe that, according to the definition, for a single genotype string the
haplotype values at a given site are predetermined in the case of homozygous
sites, whereas there is a freedom to choose between two possibilities at heterozy-
gous places. This means that for a genotype string with l heterozygous sites
there are 2l−1 possible pairs of haplotypes that resolve it.

As an example, consider the genotype g = (0212), then the possible pairs of
haplotypes that resolve it are 〈(0110), (0011)〉 and 〈(0010), (0111)〉.



The Haplotype Inference problem under the pure parsimony hypothesis is
the problem of finding a set R of n pairs of (not necessarily distinct) haplotypes
R = {〈h1, k1〉, . . . , 〈hn, kn〉}, so that 〈hi, ki〉 ⊲ gi, i = 1, . . . , n. We call H the set
of haplotypes used in the construction of R, i.e., H = {h1, . . . , hn, k1, . . . , kn}
and our goal is to minimize the cardinality of H . It has been shown that this
problem is APX-hard [9] and therefore NP-hard.

It is possible to define a graph that expresses the compatibility between geno-
types, so as to avoid unnecessary checks in the determination of the resolvents.
Let us build the graph G = (G, E), in which the set of vertices coincides with the
set of the genotypes; in the graph, a pair of genotypes g1, g2 are connected by
an edge if they are compatible, i.e., one or more common haplotypes can resolve
both of them. The same concept can be expressed also between a genotype and
a haplotype.

On the basis of the compatibility graph it is possible to devise a reduction
procedure whose goal is to try to decrease the number of distinct haplotypes
while satisfying the resolution constraint. The intuition behind the procedure is
that a possible way of reducing the haplotype number is to resolve a genotype
by a haplotype that is compatible, but not currently resolving it. A step of the
reduction procedure is described by the following proposition.

Proposition 1 (Haplotype local reduction). Given n genotypes G = {g1,

. . . , gn} and the resolvent set R = {〈h1, k1〉, . . . , 〈hn, kn〉}, so that 〈hi, ki〉 ⊲ gi.
Suppose there exist two genotypes g, g′ ∈ G such that g ⊳ 〈h, k〉, g′ ⊳ 〈h′, k′〉, h is
compatible also with g′ and h 6= h′, h 6= k′, h′ E A, k′ E B.

The replacement of 〈h′, k′〉 with 〈h, g′⊖h〉3 in the resolution of g′ is a correct
resolution that employs a number of distinct haplotypes according to the following
criteria:

– if |A| = 1 and |B| = 1, the new resolution uses at most one less distinct
haplotype;

– if |A| > 1 and |B| = 1 (or symmetrically, |A| = 1 and |B| > 1), the new
resolution uses at most the same number of distinct haplotypes;

– in the remaining case the new resolution uses at most one more distinct
haplotype.

Proof. The proof of the proposition is straightforward. The resolution is obvi-
ously correct because h is compatible with g′ and g′ ⊖ h is the complement of h

with respect to g′.
Concerning the validity of the conditions on the cardinality, let us proceed

by cases and first consider the situation in which g′ ⊖ h does not resolve any
other genotype but g′.

If |A| = |B| = 1, then h′ and k′ are not shared with other genotype resolutions
so they will not appear in the set H after the replacement, therefore since in the
new resolution h is shared between g and g′ the cardinality of H is decreased by
one.
3 With g′

⊖h we denote the complementary haplotype of h w.r.t. g. It is straightforward
to prove that such a haplotype exists and is unique.



Conversely, if one of the sets |A| or |B| consists of more than a genotype
and the other set of just one genotype, there is no guarantee of obtaining an
improvement from the replacement. Indeed, since one of the two haplotypes is
already shared with another genotype there is just a replacement of the shared
haplotype with another one in the set H .

Finally, when |A| > 1 and |B| > 1 both h′ and k′ are shared with other
genotypes therefore the replacement introduces the new haplotype g′ ⊖ h in the
set H .

Moving to the situation in which g′ ⊖ h resolves also other genotypes, the
same considerations apply; additionally, given that g′ ⊖ h is already present in
H , the number of distinct haplotypes employed in the resolution is decreased by
one. For this reason the estimation of the changes of |H | is conservative. ⊓⊔

Even though in principle the reduction procedure can be employed with any
selective solution method (such as Local Search or Genetic Algorithms), in this
paper we decided to focus on a tabu search algorithm which seemed to be very
promising.

3 Local Search techniques for Haplotype Inference

As the search space for this problem we adopt a complete representation of
the genotype resolution. That is, we consider, for each genotype g, the pair of
haplotypes 〈h, k〉 that resolves it. In this representation all the genotypes are fully
resolved at each state by construction. The search space is therefore the collection
of sets R defined as in the problem statement. The complete representation has
the advantage of allowing to design anytime algorithms, since the search can be
interrupted any moment and return a feasible solution, i.e., a set (not necessarily
minimal) of haplotypes that resolve the given genotypes.

For the cost function, we identify different components related either to op-
timality or to heuristic measures. A natural component is the objective function
of the original problem, that is the cardinality |H | of the set of haplotypes em-
ployed in the resolution. Moreover, we also include some heuristic related to the
potential quality of the solution, namely the number of incompatible sites be-
tween each genotype/haplotype pair. The cost function F is then the weighted
sum of the two components.

We designed a family of local search strategies, namely Best improvement,
Stochastic first improvement, Simulated annealing, and Tabu search. The tech-
niques are instances of the general strategies described in [10]. All of them start
with a set of haplotypes of cardinality 2n, where n is the number of genotypes,
and they explore the search space by iteratively modifying pairs of resolving
haplotypes trying to reduce the number of distinct ones. Best improvement and
Stochastic first improvement traverse the search space by moving from a state to
a neighboring one with a lower cost function value, by choosing the best and first
neighbor respectively. Simulated annealing moves also to worse states than the
current one, on the basis of a probabilistic choice function. Finally, Tabu search



behaves in principle like Best improvement but restricts the neighborhood by
forbidding recently performed moves.

Local search moves are defined upon a Hamming neighborhood function. A
good trade-off between exploration and execution time is the 1-Hamming dis-
tance neighborhood w.r.t. each haplotype in the current solution. This kind of
move can be thought as a flip, performed at a given position in a pair of hap-
lotypes resolving a given genotype. The complete exploration of such a neigh-
borhood has a time complexity bounded from above by O(nk), where k is the
number of haplotypes and n the number of sites per haplotype. In practice, the
time complexity can be further reduced by restricting the number of neighbors
to heterozygous sites and haplotypes resolving non isolated genotypes.

4 Experimental results

We developed a set of local search solvers (Tabu Search, Hill Climbing and Sim-
ulated Annealing) using EasyLocal++ [11], a framework for the development
of local search algorithms. The algorithms have been implemented in C++ and
compiled with gcc 3.2.2 and run on a Intel Xeon CPU 2.80GHz machine with
SUSE Linux 2.4.21-278-smp. Each algorithm was run on every instance one time
and we allotted 300 seconds for each execution of the algorithms. Since Tabu
search (TS) showed superior performance over the other local search algorithms,
we only discuss results of this technique.

Our Tabu search implementation considers as tabu all the moves that insist
on a pair of haplotypes that recently changed. The tabu list scheme adopted
is a dynamic one, that is for each move performed we consider it as prohibited
for a number of iterations that randomly varies between two values kmin and
kmax. The values of these parameters were chosen according to the results of an
exploratory analysis based on the F -Race method [12], and were set to kmin =
10, kmax = 20. These settings have shown to be quite robust across the variety
of instances tested. Moreover, since the algorithm that incorporates the initial
graph reduction sharply outperforms the one without graph reduction, we report
only the results of the former one.

The benchmark instances are composed of two parts. The first one, composed
of the sets Harrower uniform, Harrower non-uniform and Harrower hapmap, is
the benchmark used in [3]. The second part of the instances, namely Marchini
SU1, Marchini SU2, Marchini SU3 and Marchini SU-100kb, were taken from the
website http://www.stats.ox.ac.uk/~marchini/phaseoff.html.

The main characteristics of the instance sets are summarized in Table 1.
In order to estimate the quality of solutions produced by TS, we need to

compute the optimal solution of the benchmark instances. We tackled the in-
stances with rpoly [7], a state-of-the-art exact solver for the Haplotype Inference.
The solver is run on the same benchmark instances and on the same machine.
We allotted rpoly 24 hours of computation for each instance. The instances of
the set Harrower uniform, Harrower non-uniform, Harrower hapmap, Marchini
SU1 and Marchini SU2 were completely solved. From Marchini SU3 and Mar-



Table 1: A summary of the main characteristics of the benchmarks.

Benchmark set N. of instances N. of genotypes N. of sites

Harrower uniform 200 10÷100 30÷50

Harrower non-uniform 90 10÷100 30÷50

Harrower hapmap 24 5÷68 30÷75

Marchini SU1 100 90 179

Marchini SU2 100 90 171

Marchini SU3 100 90 187

Marchini SU-100kb 29 90 18

Table 2: Fraction of instances solved by rpoly from each benchmark.

Benchmark set Fraction of
solved instances

Harrower uniform 200/200
Harrower non-uniform 90/90
Harrower hapmap 24/24

Benchmark set Fraction of
solved instances

Marchini SU1 100/100
Marchini SU2 100/100
Marchini SU3 89/100
Marchini SU-100kb 23/29

chini SU-100kb only a portion of the instances were solved. Overall, most of the
instances could be solved with a runtime higher than 12 hours per instance. A
summary of the fraction of solved instances is reported in Table 2.

The plots in Figure 1 report the comparison between the TS and rpoly; a
point (x, y) in the plot represents the number of haplotypes in the best solution
returned by TS and rpoly, respectively. A point below the line means that the
solution returned by the algorithm corresponding to the y-axis is better than
the one returned by the algorithm associated to the x-axis.

Notice that the solution quality achieved by TS approximates the optimal
one returned by rpoly on some benchmarks, namely Harrower sets and Marchini
SU-100kb, whilst the performance on Marchini SU2 is considerably inferior. The
performance on benchmarks Marchini SU1 and Marchini SU3 is inferior, but
it has to be taken into account that TS returned a feasible solution to all the
instances of the sets, whilst rpoly solved only a fraction of the instances of
Marchini SU3. We also observe that our approach scales very smoothly.

These results enlighten the complementarity of the two approaches: the al-
gorithm that also returns the proof of optimality is definitely preferable over the
incomplete one when the execution time allotted can be large, while we can re-
sort to the approximate algorithm to have a feasible and (hopefully) near-optimal
solution in very short time.

References

1. A. G. Clark, Inference of haplotypes from PCR-amplified samples of diploid pop-
ulations, Molecular Biology and Evolution 7 (1990) 111–122.



10 20 30 40

5
10

15
20

25

Harrower−uniform

TS

rp
ol

y

10 20 30 40

5
10

15
20

25

Harrower−non−uniform

TS

rp
ol

y

0 10 20 30 40 50

10
20

30
40

Harrower−hapmap

TS

rp
ol

y

50 100 150 200

60
80

10
0

12
0

14
0

16
0

Marchini−SU1

TS

rp
ol

y

140 160 180 200

12
0

13
0

14
0

15
0

16
0

17
0

Marchini−SU2

TS

rp
ol

y

100 120 140 160 180 200

10
0

12
0

14
0

16
0

18
0

Marchini−SU3

TS

rp
ol

y
20 30 40 50 60

20
25

30
35

40
45

50

Marchini−SU−100kb

TS

rp
ol

y

Fig. 1: Comparison between TS and rpoly in terms of number of haplotypes.

2. D. Gusfield, Haplotype inference by pure parsimony., in: R. A. Baeza-Yates,
E. Chávez, M. Crochemore (Eds.), Combinatorial Pattern Matching (CPM 2003),
Proceedings of the 14th Annual Symposium, Vol. 2676 of Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin-Heidelberg, Germany, 2003, pp. 144–155.

3. D. G. Brown, I. M. Harrower, Integer programming approaches to haplotype in-
ference by pure parsimony., IEEE/ACM Transactions on Computational Biology
and Bioinformatics 3 (2) (2006) 141–154.

4. K. Kalpakis, P. Namjoshi, Haplotype phasing using semidefinite programming., in:
BIBE, IEEE Computer Society, 2005, pp. 145–152.

5. Y.-T. Huang, K.-M. Chao, T. Chen, An approximation algorithm for haplotype
inference by maximum parsimony., in: H. Haddad, L. M. Liebrock, A. Omicini,
R. L. Wainwright (Eds.), Proceedings of the 2005 ACM Symposium on Applied
Computing (SAC 2005), ACM, 2005, pp. 146–150.

6. I. Lynce, J. Marques-Silva, Efficient haplotype inference with boolean satisfiabil-
ity., in: Proceedings of the 21st National Conference on Artificial Intelligence and
the Eighteenth Innovative Applications of Artificial Intelligence Conference, AAAI
Press, Menlo Park, CA, USA, 2006.

7. A. Graça, J. Marques-Silva, I. Lynce, A. L. Oliveira, Efficient haplotype inference
with pseudo-boolean optimization, in: H. Anai, K. Horimoto, T. Kutsia (Eds.),



Algebraic Biology, Second International Conference, AB 2007, Castle of Hagenberg,
Austria, July 2-4, 2007, Proceedings, Vol. 4545 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin-Heidelberg, Germany, 2007, pp. 125–139.

8. R.-S. Wang, X.-S. Zhang, L. Sheng, Haplotype inference by pure parsimony via
genetic algorithm, in: X.-S. Zhang, D.-G. Liu, L.-Y. Wu (Eds.), Operations Re-
search and Its Applications: the Fifth International Symposium (ISORA’05), Ti-
bet, China, August 8–13, Vol. 5 of Lecture Notes in Operations Research, Beijing
World Publishing Corporation, Beijing, People Republic of China, 2005, pp. 308–
318.

9. G. Lancia, M. C. Pinotti, R. Rizzi, Haplotyping populations by pure parsimony:
Complexity of exact and approximation algorithms., INFORMS Journal on Com-
puting 16 (4) (2004) 348–359.

10. C. Blum, A. Roli, Metaheuristics in combinatorial optimization: Overview and
conceptual comparison, ACM Computing Surveys 35 (3) (2003) 268–308.

11. L. Di Gaspero, A. Schaerf, EasyLocal++: An object-oriented framework for flex-
ible design of local search algorithms, Software—Practice and Experience 33 (8)
(2003) 733–765.

12. M. Birattari, T. Stützle, L. Paquete, K. Varrentrapp, A racing algorithm for con-
figuring metaheuristics, in: Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO 2002), Morgan Kaufmann Publishers, New York (NY),
USA, 2002, pp. 11–18.


