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Abstract. Qualitative approaches, like Piecewise-Affine Differential Equa-
tions (PADEs) or those inspired from the R. Thomas formalism, repre-
sent one of the major recent improvements in biological modeling. We
show herein that these approaches might be naturally represented within
a unified theoretical framework using constraints. This result allows us
to reason about biological models which is helpful for (i) passing from
one qualitative formalism to another one and as well for (ii) building
a constraints-based protocol that opens perspectives on modeling large
genetic regulatory systems.

1 Introduction

Experimental approaches that study living system behaviors, focus on various
and complementary aspects: (i) a set of genes that composes gene regulatory
networks and (ii) a set of proteins that shapes metabolic networks. However, de-
spite their clear experimental distinction, both components belong to the same
system and interact between them for producing specific dynamical biological
behaviors (see Fig. 1 for illustration). It hence remains interesting to mix up
this distinct information through a unique modeling approach. It is achieved by
various recent modeling techniques that focus on the dynamical biological be-
havior (see [1] for review) with a special emphasis on their qualitative behaviors.
These approaches consider the gene interaction as the corner stone of an accurate
macromolecular system modeling. Like this, each gene regulatory reaction sum-
marizes a protein production that activates/represses the target gene. Among
these modeling techniques, the approaches based on Piecewise-Affine Differential
Equations (PADEs) [2, 3] and the R. Thomas formalism [4] showed astonishing
achievements at investigating gene regulatory network properties and share as
well common biological assumptions (i.e. discretizing the gene interaction im-
pact). However, although these modeling techniques show at similar biological
results, they focus on distinct theoretical features. We propose to present herein
theoretical investigations that show that two modeling approaches might be
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Fig. 1. Description of a two genes interaction network that resumes a system composed
of genes x and y. The gene x produces the protein X that activates the transcription
of genes x (i.e. auto-activation) and y. It implies a production of the protein Y that
represses the transcription of the gene x.

unified within a unique framework using the constraints programming. It em-
phasizes a description of a novel biological modeling protocol that deals with
assumptions used in either formalisms. It allows as well further investigations
like a fine reasoning on constraints related to specific biological behaviors.

This paper will introduce first in Sec. 2 the unified constraints based frame-
work. After a brief overview of the modeling approaches of interest (Sec. 2.1),
we are going to show how to transform a PADEs model and a Thomas’s model
into a set of constraints (Sec. 2.2). This set of constraints describes the discrete
dynamics that might be investigated for a better understanding of the biologi-
cal behaviors. As a guideline, such a protocol will be illustrated on a simplistic
system shown in Fig. 1. Second, Sec. 3 will present two kinds of analysis based
on the previous constraints. In particular, for investigating large gene regulatory
network, Sec. 3.1 will show a constraints based trimming approach that restricts
the study of the model on the behaviors of interest (i.e. experimentally inves-
tigated genes). Such a refinement will allow a more precise reasoning using a
symbolic model-checking (Sec. 3.2) that focuses on interesting behaviors for an
experimental validation.

2 Constraints for Modeling Genetic Regulatory Systems

2.1 Qualitative Approaches

The regulation of genetic system is achieved via macromolecular interactions that
describe positive and negative feedback loops. Qualitative approach appeared
quickly as an appropriate way for investigating such a complexity. We mention
herein the formalisms that have been successful during the last decade and that
might be expressed in a natural manner by a set of constraints.

The Biological Regulatory Graph (BRG) is widely applied for a discrete modeling
of gene regulatory networks like in Fig. 1. A BRG is a labelled directed graph
G = (V,E) where V is the set of vertices and E is the set of edges (see Fig. 2(a)).
Each edge (i → j) ∈ E is labelled with a couple (αij , θij) where α ∈ {+,−} is



the sign of interactions (respectively activation and repression) and θij is the
concentration threshold beyond which the regulation is effective.

Notation 1 We note Li, the set of labels related to the regulatory functions of
the gene i that we call the resources of i.

The System of Piecewise-Affine Differential Equations (PADEs) represents as
well the dynamic of a genetic regulatory network [5, 6]. The system follows the
form:

ẋi = fi(x)− γixi with 0 ≤ xi and 1 ≤ i ≤ n (1)

where x = (x1, . . . , xn) is a vector of protein concentrations called the quanti-
tative state of the system. (1) describes the variation of the concentration xi as
the difference between the rate of synthesis fi(x) and the rate of degradation
γixi. Note that fi(x) expresses the dependency between the synthesis rate of i
and its regulator concentrations. It can be defined as:

fi(x) = ki +
∑
j∈Li

kijbij(x) (2)

where ki, kij ∈ R+∗ are the kinetic parameters and, bij is a sigmoidal func-
tion approximated by a combination of step functions s+ and s− such as for a
regulator gene i′ of i, we have:

s+(xi′ , θi′) =

{
1, xi′ > θi′

0, xi′ < θi′
et s−(xi′ , θi′) = 1− s+(xi′ , θi′) (3)

where θi is a concentration threshold. For illustration, Fig. 2(b) shows the PADE
system that models the biological behavior of the system in Fig. 1.

The Discrete Modeling Formalism of R. Thomas (Fig. 2(c) for illustration) is
a natural discrete description of the BRG shown above and represents as well
a discretization of a PADE system. The Thomas’s formalism have to take into
account two kinds of parameters.

Numbering thresholds and discretization state. The thresholds number-
ing keeps the order between the qualitative thresholds mentioned above.
Therefore, for the thresholds of i like θ1

i < θ2
i < · · · < θn

i then its qualitative
thresholds are t1i < t2i < · · · < tni with ∀j ∈ [1, n], tji = j. The states of the
system are thus discretized into domains by the function D defines as:

Di(xi) =

{
tji , θj

i < xi < θj+1
i

0, xi < θ1
i

(4)

Parameters in discrete modeling. To each qualitative domain s is associ-
ated a qualitative focal point standing for the tendency of evolution in s.
For each qualitative domain s within the discrete abstraction, the vector of
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Fig. 2. Constraints-based protocol applied on the two genes system, where � are
0 < θ1

x < θ2
x < maxx and 0 < θ1

y < maxy ; H are 0 < kx
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discrete parameters (K1,ω1(s), . . . ,Kn,ωn(s)) gives the position of the qualita-
tive focal point. The focal point is the abstract region containing the steady
state for the PADEs in each domain. The concentration evolution is contin-
uous in a domain and the system state tends toward the focal point of the
domain. The discrete parameter of the gene i in the domain s is obtained
with ẋi = 0 in (1) and bij = 1 (due to the presence of the resource j) in (2):

Ki,ωi(s) = Di

(
ki +

∑
j∈ωi(s)

kij

γi

)
(5)

where ωi(s) ⊆ Li represents the resources of i in the domain s. The valuation
of these discrete parameters gives a discrete dynamics where each transition
between two contiguous domains is asynchronous. For illustration, it gives
the discrete dynamics shown in Fig. 2(d).



2.2 Using Constraints for Building a Discrete Dynamics Model

Based on previous descriptions, we propose to transform one formalism into
another using an automatic approach that integrates the qualitative formalisms
(see Fig. 2).

Transforming a BRG or a PADEs system into the Thomas’s formalism (Fig. 2(a)
and Fig. 2(b) to Fig. 2(c)) is achieved by reasoning on the knowledge associated
with the thresholds. There can be simple equality or inequality constraints that
allow the numbering of thresholds. These constraints are of the form θi = θ′i or
θi < θ′i where i is a gene.

Transforming the R. Thomas formalism into discrete dynamics (Fig. 2(c) to
Fig. 2(d)) is achieved by two distinct approaches.

Using the inequality constraints on the kinetic parameters like

θi <
ki +

∑
j∈ω kij

γi
or θi >

ki +
∑

j∈ω kij

γi
(6)

where ω ⊆ Li, θi is a threshold of i and, where
(
ki +

∑
j∈ω kij

)
/γi is a

component of a focal point that gives the tendency of the evolution of i with
the ressources ω. Both constraints are directly extracted from the PADEs
formalism [7] and provide the discrete parameters values. The number of
these constraints is proportional to the number of kinetic parameters. Both
inequality constraints indicate the localization of the focal point within a
domain. Therefore the number of these constraints is twice the number of
components of focal points.

Using temporal qualitative specification when inequality constraints are
difficult to obtain. Among studies that propose such an approach, two use
the constraints programming. Both approaches chosen the use of reified con-
straints1, because the formalism of R. Thomas produces graphs that might
contain domains with multiple successors. The set of constraints are based
on simple inequality constraints on the discrete parameters, which give the
notion of successors. These constraints are usually not sufficient for depict-
ing a unique discrete dynamic but give a set of possible discrete dynamics.
In this purpose, F. Corblin et al. [8] uses constraint logic programming for
analysis of GRN by knowing qualitative pathways or stable qualitative do-
mains (with no out-going transitions). The number of constraints is a linear
function of the number of qualitative domains in the pathway. And, the
number of equations expressing a transition between qualitative domains is
also a linear function of the number of component of the qualitative focal

1 by adding boolean parameters such that the parameter is true iff the linked con-
straints are true



points. On the other hand, J. Fromentin et al. [9] uses constraint program-
ming and the CTL language to find the discrete parameters. For example,
we consider the CTL formula x = 0 ⇒ EF (x = 1) in Fig. 2(c) to force the
discrete dynamics in Fig. 2(d) in order to have a pathway from x = 0 to
x = 1. For any operator �, we associate a Constraint Csi

� at each discrete
domain si. In addition for a CTL operator 4, we associate a boolean vari-
able Bsi

4 at each discrete domain si. This boolean variable indicates if the
related discrete domain validates or not the operator constraints. Therefore,
the principle is to propagate the information given by the possible succes-
sors of the discrete domains via their reified constraints and their boolean
variables. In this case, the reified constraints are more complex than those
explained in [8] because they must be equivalent to those applied within the
CTL formulae. Nevertheless, the basic constraints for the transitions are the
same: similar equality or inequality constraints on the discrete parameters.
For illustration, we consider the sub-graph of Fig. 2 (c) that includes two
domains s1 = (0, 0) and s2 = (1, 0). The application of x = 0 ⇒ EF (x = 1)
on this sub-graph implies this following decomposition for s1:
– x = 0 implies the constraint Cs1

x=0 ≡ true
– x = 1 implies Cs1

x=1 ≡ false
– EF (x = 1) implies Cs1

EF (x=1) ≡ Bs1
EF (x=1) for which

Bs1
EF (x=1) ⇔ Cs1

x=1 ∨
(
Bs2

EF (x=1) ∧Kx,{y} > 0
)

– x = 0 ⇒ EF (x = 1) implies Cs1
x=0⇒EF (x=1) ≡ Cs1

x=0 ⇒ Cs1
EF (x=1)

and this decomposition for the domain s2:
– x = 0 implies the constraint Cs2

x=0 ≡ false
– x = 1 implies Cs2

x=1 ≡ true
– EF (x = 1) implies Cs2

EF (x=1) ≡ Bs2
EF (x=1) for which

Bs2
EF (x=1) ⇔ Cs2

x=1 ∨
(
Bs1

EF (x=1) ∧Kx,{y} < 1
)

– x = 0 ⇒ EF (x = 1) implies Cs2
x=0⇒EF (x=1) ≡ Cs2

x=0 ⇒ Cs2
EF (x=1)

Note herein that the constraint that satisfies x = 0 ⇒ EF (x = 1) in s2 is
a tautology whereras Kx,{y} > 0 (i.e. the transition s1 → s2) have to be
true for satisfying Cs1

x=0⇒EF (x=1). Thus, and according to [9], the number of
constraints is related to the number of domains and CTL operators.

3 Reasoning on the Biological Constraints Based Model

Biological knowledge is obviously – by nature – incomplete. Only specific behav-
iors related to genes of interest are experimentally investigated. On the other
hand, biological models are often too large and/or complex for using standard
constraints reasoning approaches. Among several solving or analysis techniques,
we propose to use the constraints based framework for refining the model on dis-
tinct biological components, i.e. genes or gene products, in order (i) to validate
a complex model based on specific behaviors, (ii) to emphasize behaviors that
might be experimentally studied.
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Fig. 3. Reasoning on the discrete dynamics given by a result of the constraints-based
protocol where F allow the flux balance analysis.

3.1 Qualitative Behaviors Trimming

Previously shown constraints mainly describe qualitative behaviors. However an-
alyzing such behaviors remains difficult for large gene regulatory networks. The
use of our theoretical framework overcomes in a natural manner this weakness
by allowing us to trim qualitative behaviors using an additional constraints-
based approach: the flux balance analysis using the Minimal Metabolic Behavior
(MMB) technique [10] that is an elegant extension of the Elementary Flux Modes
(EFM) approach (see [11] for flux balance analysis overview). This technique is
already well-known for analyzing the metabolic flux of a balanced (steady-state)
system. It decomposes the flux constraints into minimal elementary pathways.
Combinations of these pathways describe multiple paths that material can follow
through the system. For applying these techniques on discrete dynamics graphs,
we assume (i) a specific qualitative behavior as a combination of qualitative
pathways and (ii) the discrete abstraction depicts transient behaviors between
stable domains which implies flux between initial and stable domains (or set of
domains that produce stable dynamics). Mathematically, the constraints that
describe the discrete dynamics graph have the form:

Sv = 0, vi ≥ 0, for i ∈ Irr (7)

where Irr is the set of the transitions (i.e. irreversible transitions), S is the s×m
stoichiometric matrix of the discrete dynamical network, with s domains (rows)
and m transitions (columns), and v ∈ Rm is the flux vector. As explained in
[10], the set of all possible flux distribution through the discrete dynamics graph
at steady state (i.e. all possible solutions of the constraints system described in
(7)), defines a polyhedral cone, named the steady state flux cone.

C = {v ∈ Rm | Sv = 0, vi ≥ 0, i ∈ Irr} (8)

As illustration, we depict this flux analysis applied on the discrete dynamics
model in Fig. 3(a) that represents the behaviors of the simplistic system in
Fig. 1. It is obtained by adding an input transition to the domain (0, 0): the
initial domain. We consider as well the stable domain (2, 1) as a natural output
of the system that finally consists of nine domains and eight transitions (six



regular plus two added transitions). The steady state cone can be represented
by two minimal proper faces (Fig. 3(b)) named MMB:

MMB1 : → (0, 0) → (1, 0) → (2, 0) → (2, 1) →
MMB2 : (0, 0) → (1, 0) → (1, 1) → (0, 1) → (0, 0)

where MMB1 and MMB2 show respectively a linear and a circular qualitative
pathway that passes through the qualitative domains. Interestingly, these two
pathways represent the two characteristic behaviors of the system. Note that
the lineality space lin.space(C) = {v ∈ C | vi = 0, i ∈ Irr} has dimension 0 due
to the absence of reversible transitions in the discrete dynamics graph. Such an
approach is particularly helpful for trimming a large biological model. Indeed,
focusing on a specific gene, we consider only the pathways that possess domains
and transitions related to the gene investigated. A linear combination of these
MMBs hence produces a subgraph that describes all qualitative behaviors of
interest.

3.2 Symbolic Model-Checking

The constraint-based protocol shown above is a natural unified theoretical frame-
work for the qualitative modeling approaches. Furthermore, it achieves to com-
bine additional constraints-based techniques usually applied for analyzing meta-
bolic networks. Beyond these qualitative applications, our framework provides
the opportunity to extend the modeling towards quantitative aspects by adding
delays on the discrete transitions, hence producing a hybrid model. Several stud-
ies were done for analyzing hybrid models of genetic regulatory networks: [3,
12–15]. The common assumption is to partition the qualitative domains. This
partition provides a finer transition system such that the sign patterns of the
derivatives of concentrations levels are preserved. The methods for partitioning
differ according to the different works, and the aim for each one is to give raise
to executions that have to be compared with the experimental knowledge. For
this purpose, different kinds of symbolic model checking techniques are applied,
i.e. verify biological temporal properties (e.g. CTL formulae, reachability). It is
either classical model checking ([3, 13]) or timed model checking ([14]) or hybrid
(parametric) model checking ([12, 15]), and properties are either chronological
([3, 13]) or chronometrical ([14, 15]). Our constraint-based protocol integrates a
rather different approach [9] since it implements CTL-model checking algorithms
by the mean of constraints programming, which reinforces our unified approach
on biological system modeling.

4 Discussion

This study shows that PADEs and Thomas based approaches are convergent.
Indeed, we emphasize that both formalisms might be expressed using constraints.
In practice, our modeling approach allows to choose between both formalizations
according to the experimental knowledge at disposal, i.e. known constraints on



kinetic or discrete parameters. Moreover, our unified framework achieves a novel
hybrid description of biological systems that exploits the advantages of both
formalisms.

As a natural extension of the biological problem formalization, our unified
framework allows several constraints based analyses that focus on distinct goals.
Comparing our formalization with different solving frameworks (CP, CSP or
SAT solvers [16]) represents by itself an interesting investigation area. How-
ever, we consider that one of the advantages of our approach is to produce a
well-formalized and/or biologically certified problem that might be suitable for
further constraints based investigations.

Our protocol aims at reasoning on more realistic biological networks. As illus-
tration, we applied it on the gene regulatory network of the carbon starvation
response in E. coli formalized using a PADEs system (following the descrip-
tion given in [17]). Six genes compose the gene regulatory network that might
be represented using 37 constraints (constraints on inequalities and thresholds
used in the PADEs system). They produce a discrete dynamics graph with 912
qualitative domains. This problem is hence formalized with simple constraints.
However, although the constraints formalization is a relatively easy task, the
problem remains difficult to analyze with standard techniques due to the com-
plexity of the discrete dynamics graphs. It confirms the interest of dedicated
constraints based techniques for investigating the biological properties of the
complete genes interaction networks.

Acknowledgements D.E. thanks Olivier Bernard for long-term discussions on
the qualitative modeling approaches. The authors alsos thanks Jamil Ahmad for
fruitful discussions during this work.
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