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Abstract. Haplotype inference is an important and computationalbllenging
problem in genetics. A well-known approach to haplotypeiiahce is pure par-
simony (HIPP). Despite being based on a simple optimizatigerion, HIPP is
a computationally hard problem. Recent work has shown thatcaches based
on Boolean satisfiability namely pseudo-Boolean optinizatPBO), are very
effective at tackling the HIPP problem. Extensive work ondRPBased HIPP ap-
proaches has been recently developed. Considering th&BReproblem, also
known as 0-1 ILP problem, is a particular case of the inteigear programming
(ILP) problem, generic ILP solvers can be considered. Thjgep compares the
performance of PBO and ILP solvers on a variety of HIPP mod#ksconclude
that specialized PBO solvers are more suitable than getdtisolvers.

1 Introduction

Understanding genetic differences between human beiraysriscial step towards the
diagnosis and prevention of genetic diseases. Haplotyfpeeince is a key problem to
solve for achieving this goal, since haplotypes include tnobshe information about
human genetic variations. A well-known haplotype infeapproach is the pure par-
simony (HIPP) which, among the possible solutions, chotsesne with the smallest
number of distinct haplotypes [7].

Former work on the HIPP problem was mainly based on integealiprogramming
(ILP) [7,2, 3]. Afterwards, Boolean satisfiability (SAT)][@nd pseudo-Boolean opti-
mization (PBO) [5] have been used to solve the problem. RcétBO HIPP-based
approaches have been improved, generating further reduodels [6]. Considering
that PBO is a particular case of ILP, existing PBO models tsmlze solved by generic
ILP solvers.

This work compares the performance of different HIPP modefscribed in the
literature [2, 5, 6], using different PBO solvers [11, 101 and the generic ILP solver
CPLEX. To the best of our knowledge, such a comparison hasrrimen made in the
past. This paper aims at performing a comprehensible eN@atuaf different models
and solvers. The analysis of the experimental results gngghts to select the most
appropriate modelling techniques depending on the kindloks being used.

The paper is organized as follows. The next section descthee HIPP problem.
Section 3 details recent PBO HIPP models, namely RPoly [8]the recent improve-
ments to the model [6]. Afterwards, on section 4, experirle®sults comparing ILP
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and PBO approaches to the HIPP problem are presented.ykithallpaper concludes
in section 5.

2 Haplotype Inference by Pure Parsimony

Single nucleotide polymorphisms (SNPs) correspond tc sitethe DNA sequence
where mutations have occurred and which represent a sigmifi@riability on the pop-
ulation. Haplotypes can be seen as a sequence of SNPs highdyated, within a single
chromosome. It is technically difficult to obtain haplotgmirectly. Instead, genotypes,
which correspond to the mixed data of two haplotypes on hogmls chromosomes,
are experimentally obtained. The haplotype inference lprotzonsists in finding the
set of haplotypes which originated a given set of genotypes.

Considering that mutations are rare, we may assume thatS¥dehcan only have
two values. Each haplotype is therefore represented byeaybatring with sizen € N,
where 0 represents the wild type and 1 represents the myjaat Each site of the
haplotypeh; is represented b¥;; (1 < j < m). Each genotype is represented by
a string, with sizem, over the alphabef0, 1,2}, and each site of the genotypgis
represented by;;. Each genotype is explained by two haplotypes. A genotype G
is explained by a pair of haplotypeisi(h?) such that

he, if h¢, = hY.
= LAY i 1

gi {2 i b bl @)
with 1 < j < m. A genotype sitgy;; with either value 0 or 1 is a homozygous site,
whereas a site with value 2 is a heterozygous site.

Definition 1. Given a selj of n genotypes each with size, the haplotype inference
problem consists in finding a set of haplotygéssuch that each genotypg € G is
explained by two haplotypés, ht € H.

For each genotype with k& heterozygous sites, there &% ! pairs of haplotypes
that can explairy. For example, genotypg = 202 can be explained either by hap-
lotypes (000,101) or by haplotypes (001,100). Severaleggres to the haplotype in-
ference problem have been suggested. Given that indiadieah the same population
share many haplotypes, the pure parsimony approach seduohe solution with the
smallest number of distinct haplotypes.

Definition 2. The haplotype inference by pure parsimony (HIPP) problemsists in
finding a solution to the haplotype inference problem whi¢himizes the number of
distinct haplotypes [7].

Example 1.Consider the set of genotypés g1 = 022, go = 221 andgs = 222.
There are solutions using 6 different haplotypés k¢ = 001, A} = 010, h§ = 011,

h} = 101, h% = 000 andh} = 111. However the HIPP solution only requires 4 distinct
haplotypesHs: h{ = 011, h} = 000, h = 011, h} = 101, h$ = 011 andhf = 100.

It has been shown that the HIPP problem is NP-hard [8].
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3 ILP/PBO-based HIPP Models

With a few notable exceptions [12], early work on the HIPPbean used models based
on integer linear programming [7, 2, 3]. The original ILP neq®RTIP[7], has exponen-
tial space complexity on the number of heterozygous siteaumse, in the worst case,
it requires the enumeration of all possible pairs of hagles/that can explain each
genotype. Afterwards, two polynomial ILP moddglylP [2] and HybridIP [3], were
proposed-.

Recently, a very competitive SAT-based appro&H|Ps[9], suggested an incre-
mental algorithm that, starting from a clique-based lowaurixd on the number of re-
quired haplotypes, models the problem into SAT and searfchies HIPP solution. If
no solution is found, the lower bound is incremented by orttanew SAT instance
is generated. When a solution is found, the minimum numbbapfotypes is given by
the value of the lower bound. More recent approaches usalpdgoolean optimiza-
tion models [5, 6]. These models represent an improvemeatiins of the efficiency of
HIPP solvers.

The Reduced Polynodel (RPoly) [5] proposed a number of simplifications to the
Poly model. The RPoly model associates two haplotypésh?) with each genotype
gi, for1 <4 < n. Avariablet;; is associated with each heterozygous gitesuch that
ti; = 1if b, = 1andh?; = 0, whereas;; = 0if h{; = 0 andhl; = 1.

Another key issue in the RPoly’s formulation is the notiorirafompatibility. Two
genotypes are incompatible if they cannot be explained bgranton haplotype, or
equivalently, genotypeg andg;., are incompatible if there exisys(1 < j < m) such
thatg;; + gr; = 1. Otherwise, they are said to be compatible. For candidatttypes
hY andhi, with p, ¢ € {a,b} andl < k < i < n, a variablez? is defined, such that,
«% 1 = 1if haplotypeh! of genotypey; and haplotypé] of genotypey,, are different.
If two genotypes are incompatible, then they cannot shaexplaining haplotype, and
consequently, for the four possible combinationg ahdg, 2%, = 1.

Finally, in order to count the number of distinct haplotypesgd, variables? are
defined such that? = 1 if haplotypeh!, which explains genotypg, is different from
all the haplotypes which explain genotypgs with & < i. The conditions on variables
u? are

oo abpoul <2i-3, )
1<k<i;q€{a,b}

with p € {a,b} andl < i < n. The objective function minimizes the sum of variables
ul.

An improved RPoly model was recently proposed [6]. This nevdel, NRPoly in-
tegrates the SHIPs clique-based lower bound in the RPolyehaod extends the model
with additional constraints. The components of the SHIR&ldbound allow both fix-
ing the value of some of the! variables and also avoiding generating the constraints
involving fixed u? variables [9]. Moreover, the order in which the genotypesam-

sidered must reflect the order in which the genotypes areingbd lower bound [6]. In

! Throughout the paper we will remove the suffixand use onlyPoly andHybrid.
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practice, the integration of SHIP’s lower bound allows fixthe value of many:” vari-
ables and, as several constraints need not be generateds ailgnificantly reducing
the size of the model.

The second optimization is related with a key simplificat@frthe RTIP model,
which consists in not considering pairs of haplotypes whath bf them do not explain
more than one genotype. Actually, if a genotypés not incompatible with all other
genotypes, then at least one of the haplotypes that exgplamust explain other geno-
type. For each genotypg € G compatible with at least one more genotyp&jirthe
following constraint is generated,

> 2P 4 ul +ub < 4K+ 1, (3)
k>i;p,q€{a,b};r(k,i)

where predicate(k, ) is defined true ifg;, andg; are compatible and is the cardi-
nality of the sef{gr, € G : k > i A k(k,7)}.

The last optimization consists in adding cardinality coamists on the values of
variablesz. For many combinatorial problems, adding cardinality ¢raists to the
model can prune the search space, helping the solver to fiotltos. Clearly, two
different genotypesg; andg, cannot be explained by the same pair of haplotypes, and
theng; andg, can be at most explained by one haplotype in common. Thexefor
each pair of distinct genotypes and g, (k¢ < 1), if g; and g, are compatible and
non-homozygous, then

Z V> 3. (4)

p,q€{a,b}

4 Generic ILP vs Specialized 0-1 ILP for the HIPP problem

In this section we compare the relative performance of disaptimization HIPP mod-
els using different 0-1 ILP solvers and a generic ILP sol#etonsiderable number of
HIPP models and solvers are evaluated. To the best of ourlkdge, such comparation
has never been performed so far.

4.1 Experimental Setup

An extensive evaluation, using 1183 problem instances@jiding real and synthetic
data, has been performed. The solvers used were MiniSatPiéplo [11] version 1.5,
the latest version of BSOLO [10], PBS4 [1], glpPB releasednd CPLEX version
11.0 (www.ilog.com/products/cplex/). The results wertaaied on an Intel Xeon 5160
server (3.0GHz, 4MB RAM) running Red Hat Enterprise Linux W.S he timeout for
each instance was set to 1000 seconds.

4.2 Results

The Poly, RPoly and NRPoly models were adapted to be run bfivbelifferent 0-1
ILP solvers (Minisat+, Pueblo, BSOLO, PBS4 and glpPB) amdgéneric ILP solver
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Table 1. Number of instances aborted (out of 1183) for each model alvéis(timeout 1000s)

| | PBO solver |ILP Solver]
Model |MiniSat+ Pueblo BSOLO PBS4 glpPBCPLEX
Poly 82 251 486 605 1091 705
RPoly| 36 127 290 326 723 234
NRPoly 18 55 120 108 611 249

Table 2. Number of instances aborted (out of 1183) using CPLEX, oih éale model (timeout
1000s)

Model |RTIP|PolyHybrid|RPolyiNRPoly
# aborted| 378|707| 717 | 234 | 249

CPLEX. All solvers are then being evaluated on exactly tieesenodels. Table 1 pro-
vides a summary of the results obtained, with the numbersiainces aborted (out of
1183) for each model.

Clearly, the best performing solver for each of the three el MiniSat+. In
general, MiniSat+, Pueblo, BSOLO and PBS4 solvers outparfoPLEX. The only
exception is with the RPoly model, where CPLEX solves mostainces than both
BSOLO and PBS4.

For the results shown, the Poly model used is a re-implertientaf the model
described in [2]. The original Poly model gives similar riésuaborting 707 instances
instead of the 705 shown, using CPLEX. Even though the algioly model was
developed to be solved using CPLEX, the results suggestrihat of the specialized
0-1 ILP solvers perform better for this model.

The glpPB solver is the worst performing solver for each efttiree models (Poly,
RPoly, NRPoly). glpPB is a ILP-based pseudo-Boolean spilat uses the GNU linear
programming kit (GLPK, www.gnu.org/software/glpk/). Hen the glpPB ILP-based
solver implements some of the techniques also used by CPbEXgIpPB is not as
optimized as CPLEX.

For all PBO solvers, NRPoly is shown to be more robust tharptheious RPoly
model. Solving the NRPoly model using MiniSat+, Pueblo, B8r PBS4, reduces
at least by 50% the number of instances not solved within K#@@nds. Using the
glpPB solver, the number of aborted instances is reduceslity However, the generic
ILP solver, CPLEX, does not benefit from the techniques ohiced in the new model.
Indeed, the NRPoly model aborts 15 instances more than tledyRRodel, using
CPLEX.

Table 2 summarizes the number of aborted instances for eadblmsing CPLEX.
For RTIP, Poly and Hybrid the same code used in [3], develdpeble used with
CPLEX, has been run. The RPoly and NRPoly models were addpteé run by
CPLEX. The number of instances aborted by the most recenelsod@Poly and NR-
Poly, is much smaller than the number of instances abortetthdyprevious models,
confirming that the new models are more robust. However,raa@d mentioned be-
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Table 3. Number of instances aborted (out of 1183) by each versionRPdy model using
CPLEX

Model |RPolyNRPolyvi|NRPolyv2NRPoly
# aborted| 234 258 257 249

fore, the most recent model, NRPoly, does not perform asasgethe RPoly model, in
contrast with PBO solvers.

In order to understand whether NRPoly performs worse thaolyRéue to a par-
ticular feature of the NRPoly model, we analyzed the pertoroe of NRPoly for each
additional new technique included in this model. Table 3pnés the number of aborted
instances for each NRPoly version. We @R Poly vito the version that only integrates
the lower bound of SHIPSRPoly v2corresponds to the version with the lower bound
of SHIPs and cardinality constraints on th@ariables. The final version, that includes
also the RTIP pruning, is simplMRPoly As can be concluded, the integration of the
lower bound of SHIPs is the reason why NRPoly performs wdraa RPoly (24 more
instances are aborted) when using CPLEX. In fact, both ttegiation of cardinality
constraints and the RTIP pruning have been shown to helpPh&R solver.

Finally, figure 1 provides a plot comparing RPoly using aitkéniSat+ or CPLEX,
and NRPoly using either MiniSat+ or CPLEXRPoly with MiniSat+ is more efficient
than RPoly with CPLEX (36 vs. 234 aborted instances) and N\RRdh MiniSat+
is more efficient than NRPoly with CPLEX (18 vs. 249 abortestamces). The set of
instances aborted using MiniSat+ is a subset of instaneaeseatby CPLEX. This result
is not surprising given that Poly with MiniSat+ has been shdmthe past to be more
efficient than Poly with CPLEX [5]. However, taking into acot that the two versions
of Poly were not implemented by the same authors, this newpeoison was deemed
necessary.

5 Conclusions

This paper analyzes the performance of different genedspacialized ILP solvers on
recently proposed HIPP models. Our experiments show th&@Ai-based PBO solvers
are, in general, more suitable than the state of the art gelhét solver CPLEX. The
experimental results confirm that the poor performance dff2Pis a consequence of
the ILP techniques used. Similar conclusions can be drawth®ILP-based glpPB
solver, which is the worst-performing ILP solver for the IRIProblem. glpPB uses
some of the techniques used by CPLEX, but is significantly éggimized. Moreover,
the results for CPLEX and glpPB suggest that similar resuttsld be obtained in case
a different ILP solver was considered.

Our conclusion is that, for the HIPP case and probably foeofroblems which
can be naturally formulated as a 0-1 ILP problem, specific BB®ers should be con-

2 Each point in the plot corresponds to a problem instanceravtiee x-axis corresponds to
the CPU time required by MiniSat+ and the y-axis correspdndbie CPU time required by
CPLEX.
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Fig. 1. CPU time results for RPoly and NRPoly

sidered. Furthermore, we observe that some modeling tggbgsiused to optimize the
PBO approaches do not produce improvements when the ILBrSBRLEX is used.
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