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Abstract. We propose a methodology to design gene regulatory networks with 

targeted dynamics based on combinatorial optimisation that poses new 

challenges for constraints programming. We use genetic programming 

techniques to evolve from scratch a transcriptional circuit with unconstrained 

number of genes that works as a logic gate or as an oscillator. Our circuits are 

defined by a set of non-linear differential equations describing the protein 

concentrations. At each evolutive step we could add or remove a concentration 

and its corresponding differential equation. This corresponds to adding or 

removing a gene. We can also modify the functional form of a differential 

equation or modify some kinetic parameter. This corresponds to mutation 

events in the regulatory or coding sequence. We define as the scoring function 

the distance between the circuit dynamics and the targeted behaviour We 

explore the space of all possible transcriptional regulation networks, where at 

each step we would add/subtract new interactions or modify kinetic parameters, 

to find the optimal circuit with specified system behaviour. We apply our 

methodology to the design of genetic devices having a desired switching or 

oscillatory behaviour. Our circuits could be constructed experimentally by 

assembling biological parts with appropriate kinetic properties. This is not 

possible in general and the designer, who will only have a small set of available 

biological parts, will be forced to evolve some of its parts. This introduces a 

parameter range for each part that it will propagate into an evolvability range 

for each designed circuit. Those ranges are best described by using constraints 

and the evolution process could implement model-checking prior to the 

evaluation of the dynamics.   

Keywords: Biological Systems, Regulatory Networks, Genetic Programming, 

Combinatorial Optimisation. 



1   Introduction 

One of the most intriguing aspects of networks of complex systems is their temporal 

dynamics. Very often in complex systems the dynamics does not follow from the 

network topology. Among the chief examples of complex networks are the genetic 

transcription networks. The study of those networks has important applications in 

understanding the circuitry of living systems. There has been a tremendous work on 

elucidating the network topology of transcription networks [1]. Studies of recurrent 

network motifs showed that their dynamics could provide useful functions [2,3]. 

These reverse-engineering studies are very useful to plan the forward-engineering of 

synthetic circuits. The new development of standardized genetic parts [4] will allow 

designing much complex networks in a modular way according to some specifications 

by the assembly of those parts. Usually genetic parts are taken from wild-type 

organisms. Nevertheless, some experimental work has been performed on building 

synthetic parts such as promoters with altered operator sites [5,6,7], modified 

ribosome binding sites [8], or codon-optimized coding regions [9]. The de novo 

design of protein has engineered new coding regions with specified functions and 

sometimes they have no similarity with any natural sequence [10,11,12]. In addition, 

most synthetic promoters are regulated by a single transcription factor, but there has 

also been some work on the design of promoters regulated by two transcription 

factors [13,14].  

The design of artificial genetic networks [15,16,17] has boosted the emerging field 

of synthetic biology [18]. Still most of the work has been done using rational design 

techniques, limiting the computational facilities to the solving of dynamical 

equations. It would be extremely useful to be able to use computational methods to 

aid in the optimization and design of new circuits. For instance, we could use a 

catalogue of genetic circuits with optimized transfer functions as educated guesses to 

aid in the design of a given genetic circuit. Previous work has already used 

evolutionary methods to design circuits able to oscillate, although they were 

composed of electronic components [19]. Another work [20] did focus on biological 

networks, using protein species and a post-translational regulation to design several 

types of circuits, although this type of regulation is difficult to implement 

experimentally. Here, we propose to address transcriptional regulatory interactions, 

neglecting post-translation regulations, to implement genetic networks that could 

eventually be synthesized.  

Our computational algorithm (Genetdes) searches the space of artificial genetic 

networks to find the optimal circuits with a targeted temporal behaviour [21]. During 

our simulation, we add or subtract genes, change kinetic constants or the operator-

binding logic function at promoters. Each generated circuit is evolved in time and we 

use the average deviation to an expected temporal function as scoring function. We 

use Monte Carlo Simulated Annealing [22] method to do the optimization in the space 

of all possible genetic circuits. Our circuits could be constructed experimentally by 

assembling biological parts with appropriate kinetic properties. This is not possible in 

general and the designer, who will only have a small set of available biological parts, 

will be forced to evolve some of her parts. This introduces a parameter range for each 

part that it will propagate into an evolvability range for each designed circuit. Those 



ranges are best described by using constraints and the evolution process could 

implement model-checking prior to the evaluation of the dynamics. 

 

 

 

 

2   Methods 
 

2.1. Mathematical model 

 

    The dynamics of transcriptional regulatory networks can be depicted by systems of 

nonlinear first-order ordinary differential equations. We have considered an effective 

model of protein concentrations for the transcriptional regulations. The dynamics of a 

transcription factor concentration (Yi) follows the differential equation 

 

d[Yi]/dt = αi Ri - βi [Yi] + γi , (1) 

 

where αi is the transcription-translation rate of gene i, βi the corresponding 

degradation rate, and γi the basal rate. The function Ri defines the regulatory factor for 

the promoter of gene i, defined by  

 

Ri = 1/(1+([Yj]/Kij)
nij

) , (2) 

 

where Kij is the regulatory coefficient and nij is the Hill coefficient (chosen positive 

for repressions and negative for activations) for the transcription factor j.  

 

2.2. Fitness function 

 

    We compute the fitness function as the deviation of the circuit dynamics (y) respect 

to the targeted dynamics (z) as  

 

J = ∫ |y-z| χ dt , (3) 

 

where χ is a weighting factor used to only compute a region of interest (e.g., to avoid 

transients or to impose an oscillatory dynamics). In that way, we construct a 

minimization problem, where we evolve networks to behave close to the specified 

dynamics (z).   

    We use several transfer functions to specify the target behaviour. Each transfer 

function gives the behaviour of the system for a given input state. In that way, four 

transfer functions are required to design a circuit working as a logic gate of two 

inputs, as there are four entries in the corresponding truth table. On the other hand, to 

design an autonomous oscillator we need just one transfer function. Therefore, for 



each transfer function we compute the fitness of the system, and the global fitness 

function is the sum of all them. 

    However, the landscape proposed by that fitness function has not large biological 

referents as these systems have to be robust as well as functional. Thus, we extend the 

fitness function to    

 

F = (1-r) J + r J’ , (4) 

where J is the fitness function given by the equation 3, J’ is a new term to count the 

robustness of the system and r is the degree of robustness for our design. In this work 

we just study the robustness under parameter perturbations. However, further works 

will study the robustness under topological perturbations, which will give important 

issues for understanding the evolution of biological systems. Therefore, we compute 

J’ as the average value of all fitness functions (here we compute 10) after perturbing 

randomly all the model parameters.  

 

2.3. Optimization procedure 

 

    We use Monte Carlo Simulated Annealing [22] to optimize transcription circuits in 

the space of topologies and parameters. We define a mutation operator to evolve the 

circuit. This operator consists of two moves, both with a probability of occurrence. 

The first move is in the parameter space. We select randomly a parameter of the 

model and we perturb it within the corresponding range of values. The second move 

is in the topology space. There are five possibilities: (i) change the logic function of a 

binary promoter, (ii) add a new regulation, (iii) remove a regulation, (iv) add a new 

gene in the circuit or (v) remove a gene from the circuit. We can specify the 

probabilities to do these moves according to our design purposes. In addition, for 

convergence purposes, the probability to do a parameter move is taken much higher 

than the one to do a topology move (e.g., 0.99). In that way, for each evolved 

topology we explore the parameter space.  

    In case of no initial network specification, we start from a disconnected circuit 

where the number of genes of the circuit is equal to the number of inputs plus the 

number of outputs. We take a Metropolis criterion to accept a mutation, using an 

exponential cooling scheme.  As each mutation only involves a small change in the 

network it could be possible to obtain an analytical approximation to the dynamics. 

This would speed up our methodology in at least one order of magnitude. 

 

3   Design of small networks 

We have applied our methodology to design genetic devices implementing a given 

behaviour. We focus in designing small functional modules, which could later be 

assembled arriving to large and sophisticated networks. We have targeted digital 

behaviours. Our devices consist on genetic circuits having the concentration of two 

and one transcription factors as input and output respectively. We have targeted AND, 



OR, NAND and NOR gates, and in Fig. 1 we show the designed circuit with AND 

behaviour. u1 and u2 are the input transcription factors and y is the output 

corresponding to the concentration of a gene product. To compute the objective 

function we have averaged the score obtained with each transfer function 

corresponding to every entry of the truth table. We have evaluated the score by 

computing (3) during 100 minutes, which provides one order of magnitude more time 

that the transient needed to attain the steady state. We have computed a score for 

transfer function and we have averaged it. However, for visualization purposes, we 

have plotted a temporal dynamics where the input transcription factors concentrations 

u1 and u2 take all possible Boolean values of a two-input truth table. Inputs can be 

activators or repressors according to the chosen promoter during the simulation. 

 

Fig. 1. Transcriptional network composed of three genes (a, b and c) designed to behave as an 

AND gate. On the left, time evolution of transcription factor inductors u1 and u2 corresponding 

to (u1, u2)=(0, 0), (0, 1), (1, 0) and (1, 1) for times 0-100, 100-200, 200-300 and 300-400 

minutes respectively. On the centre, the circuit obtained with our methodology. On the right, 

the network dynamics (solid line) superimposed to the targeted behaviour (dashed line). 

We have also designed circuits showing an oscillatory behaviour. Towards this 

end, we have targeted a sinusoidal function. We have considered a weighting factor to 

compute the score such that it was 1 only in the neighbourhood of a maximum or 

minimum of the targeted sinusoidal function. This was done to improve the 

convergence. Fig. 2 shows the optimal genetic network and its time behaviour. We 

plot as a dashed line the targeted sinusoidal function and as a solid line the 

corresponding time evolution of the output gene expression. This forward engineering 

approach has allowed us to design a large set of oscillators and to study evolutionary 

principles on natural occurring circadian clocks [23].  In addition, we have studied the 

behaviour of such networks when forcing with external cyclic stimuli at different 

periods [24]. 

 



 

Fig. 2. Transcriptional network designed to show an oscillatory behaviour. The dashed line on 

the right plot denotes the targeted dynamics. 

It is not possible to estimate the complexity of our evolution because it depends on 

a heuristic optimization process, which will change for each system analyzed.  the 

search throughout the space of genetic networks. Our algorithm writes and reads in 

SBML level 2 [25], which allows to interface it with a large number of other software. 

In the species definition, if the specie is an input then its boundary condition will be 

set to true (false otherwise). Each reaction (transcription-translation) has 1 product 

and at most 2 reactants. To describe this we need the corresponding kinetic 

parameters and two additional variables specifying the logical function at the 

promoter and whether a gene is considered a reporter. 

 

 

Fig. 3. Scheme showing the flux of Genetdes. 

 



 
 

Fig. 4. Example of a design of a complex system using simple functional devices. 

 

 

4   Discussion 
 

One question to address, from a systems/synthetic biology point of view, is 

whether natural genetic networks are understandable as systems of devices. Have 

natural circuits a selective pressure for a given network motif or for a given function? 

If there could exist a selective pressure for given network modules behaviour, then 

some circuits within a module could get rewired by evolution while maintaining their 

functionality. For instance, it could be that some AND circuits would occasionally 

appear in evolution substituted by another AND circuit. On the other hand, natural 

gene circuits may not rely on functional modules, but on a complex intertwined 

network of interactions, as it usually happens with evolutionary design. In this later 

case, maybe the only way to design a system of devices would be by using an 

evolutionary design procedure. We could then use directed evolution of gene circuits 

or in a combination with a computational procedure. In that way, in further work we 

will expand our methodology to design systems with complex behaviours from a 

library of functional devices (see Fig. 4). 

The implementation of a circuit in a given cellular context usually requires a 

constant fine-tuning of the model to obtain a successful prototype. In that way, the 

fact of having a repository of already characterized parts is very useful when 

implementing a circuit. Therefore, we have developed a software (Asmparts) to 

assemble part models to construct large systems [26]. We have combined Asmparts 

with Genetdes to construct and optimize genetic networks. 
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