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Abstract. We present here a way to compute the minimal semi-positive
invariants of a Petri net representing a biological reaction system, as
resolution of a CSP. The use of Petri-nets to manipulate those models and
make available a variety of tools is quite old, and recently analyses based
on invariant computation for biological models have become more and
more frequent, especially in the context of module decomposition. In our
case, this analysis brings both qualitative and quantitative information
on the models, in the form of conservation laws, consistency checking,
etc. thanks to finite domain constraint programming. It is noticeable that
some of the most recent optimizations of standard invariant computation
techniques in Petri-nets correspond to well-known techniques in CSPs,
like symmetry-breaking. A simple prototype based on GNU-Prolog’s FD
solver, and including symmetry detection and breaking, was incorporated
into the BIOCHAM modelling environment. Some illustrative examples
and a few benchmarks are provided.

1 Introduction

Reaction models like those of reactome.org, KEGG pathway database [1] or
biomodels.net represent a growing part of Systems Biology especially for meta-
bolic or signalling pathways, cell-cycle and more generally post-genomic regu-
lation systems. They build on established standards like BioPAX or SBML [2]
to facilitate the exchange and comparison of models and benefit from a large
number of available tools, especially ODE integration based simulators.

The use of Petri-nets to represent those models, taking into account the
difference between compounds and reactions in the graph, and make available
various kinds of analyses is quite old [3], however it remains somehow focused
towards mostly qualitative and structural properties. Some have been used for
module decomposition, like (I/O) T-invariants [4,5], related to dynamical no-
tions of elementary flux modes [6]. However, there is, to our knowledge, very
little use of P-invariant computation, which provides both qualitative informa-
tion about some notion of module related to the “life cycle” of compounds, and
quantitative information related to conservation laws and Jacobian matrix sin-
gularity. Conservation law extraction is actually already provided by a few tools,
but then using numerical methods, based on the quantitative view of the model,
and not integer arithmetic (as in direct P-invariant analysis).

reactome.org
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We present here a very simple way to incorporate invariant computation in
an existing biological modelling tool, using constraint programming with sym-
metry detection and breaking. We compare it to other approaches and evaluate
it, for the case of P-invariants, on some examples of various sizes, like the MAPK
cascade models of [7] and [8]. This experimentation is done through an imple-
mentation of the described method in the BIOCHAM modelling environment1

[9,10].

2 Petri-net view of a reaction model

A Petri-net is a bipartite oriented (weighted) graph of transitions, usually repre-
sented as square boxes, and places, usually represented as circles, that defines a
(actually not only one) transition relation on markings of the net, i.e. multisets
of tokens associated to places. The relation is defined by firings of transitions,
i.e. when there are tokens (as many as the weight of the incoming arc) in all
pre-places of a transition, they can be consumed and as many tokens as the
weight on the outgoing arc are added to each post-place.

The classical Petri-net view of a reaction model is simply to associate bio-
chemical species to places and biochemical reactions to transitions.

Example 1. For instance the enzymatic reaction written (in BIOCHAM-like syn-
tax), A + E <=> A-E => B + E corresponds to the following Petri-net :

A B

E

A-E

t1

t−1

t2

In this Petri-net, starting from a marking with at least one token in A and
in E, one can remove one of each to produce one token in A-E (firing of t1) and
then either remove it to add again one token to A and one to E (firing of t−1),
or to add one B and one E (firing of t2).

P (resp. T) invariants are defined, as usual, as vectors V representing a
multiset of places (resp. of transitions) such that V · I = 0 (resp. I · V = 0)
where I is the incidence matrix of the Petri net, i.e. Iij is the number of arcs

1 At review time the version containing P-invariant computation might not have
been released, but only in beta versions available at http://www-rocq.inria.fr/
∼soliman/Biocham.dmg
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from transition i to place j, minus the number of arcs from place j to transition
i. Intuitively, a P-invariant is a multiset representing a weighting of the places
and such that any such weighted marking remains invariant by any firing; a T-
invariant represents a multiset of firings that will leave invariant any marking
(see also section 4). As explained in introduction, for reaction models these
invariants are used for flux analysis, variable simplification through conservation
law extraction, module decomposition, etc.

3 Related work

To compute the invariants of a Petri net, especially if this computation is com-
bined with other Petri-net analyses, like sinks and sources, traps, deadlocks, etc.
the most natural solution is to use a Petri-net dedicated tool like INA, PiNA,
or Charlie for instance through the interface of Snoopy [11], which will soon
allow the import of SBML models as Petri-nets. Standard integer methods like
Fourier-Motzkin elimination will then provide an efficient means to compute P
or T-invariants. These methods however generate lots of candidates which are
afterwards eliminated and also need to incorporate some means (like equality
class definition) to avoid combinatorial explosion at least in some simple cases,
as explained in section 5.

Another way to extract the minimal semi-positive invariants of a model is
to use one of the software tools that provide this computation for biological
systems, generally as “conservation law” computation, and based on linear al-
gebra methods like QR factorization [12]. This is the case for instance of the
METATOOL [13] and COPASI [14] tools. The idea is to use a linear relaxation
of the problem, which suits well very big graphs, but needs again a posteriori
filtering of the candidate solutions. Moreover, these methods do not incorporate
any means of symmetry elimination (see section 5).

4 Finding invariants as a Constraint Solving Problem

We will illustrate our new method for computing the invariants with the case of
P-invariants (but T-invariants, being dual, would work in the same fashion). For
a Petri net with p places and t transitions (Li → Ri), a P-invariant is a vector
V ∈ Np s.t. V · I = 0, i.e. ∀1 ≤ i ≤ t V · Li = V ·Ri. Since those vectors all live
in Np, it is quite natural to see this as a CSP with t (linear) equality constraints
on p Finite Domains variables.

Example 2. Using the Petri-net of example 1 we have:

A + E => A-E

A-E => A + E

A-E => B + E
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This results in the following equations:

A + E = AE (1)
AE = A + E (2)
AE = B + E (3)

where obviously equation (2) is redundant.

The task is actually to find invariants with minimal support (a linear combi-
nation of invariants belonging to Np also being an invariant), i.e. having as few
non-zero components as possible, these components being as small as possible,
but of course non trivial, we thus add the constraint that V · 1 > 0.

Example 3. In our running example we thus add A + E + AE + B > 0.

Now, to ensure minimality the labelling is invoked from small to big values
and a branch and bound procedure is wrapped around it, maintaining a partial
base B of P-invariant vectors and adding the constraint that a new vector V is
solution if ∀B ∈ B

∏
Bi 6=0 Vi = 0, which means that its support is not bigger

than that of any vector of the base.
Unfortunately, even with the last constraint, no search heuristic was found

that makes removing subsumed P-invariants unnecessary. Thus, if a new vector
is added to B, previously found vectors with a bigger support must be removed.

This algorithm was implemented directly into BIOCHAM [9], which is pro-
grammed in GNU-Prolog, and allowed for immediate testing.

Example 4. In our running example we find two minimal semi-positive P-invariants:

– E = AE = 1 and A = B = 0
– A = B = AE = 1 and E = 0

5 Equality classes

The problem of finding minimal semi-positive invariants is clearly EXPSPACE
since there can be an exponential number of such invariants. For instance the
model given in example 5 has 2n minimal semi-positive P-invariants (each one
with either Ai or Bi equal to 1 and the other equal to 0).

Example 5.

A1 + B1 => A2 + B2
A2 + B2 => A3 + B3
...
An + Bn => A1 + B1

A1

B1

A2

B2

A3

B3

An

Bn

. . .
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A first remark is that in this example, there is a variable symmetry between
all the pairs (Ai, Bi) of variables corresponding to places. This symmetry is easy
to detect (purely syntactical) and can be eliminated through the usual ordering
of variables, by adding the constraints Ai ≤ Bi.

This classical CSP optimization is enough to avoid most of the trivial ex-
ponential blow-ups and corresponds to the initial phase of parallel places detec-
tion and merging of the equality classes optimization for the standard Fourier-
Motzkin algorithm [15]. Note however that in that method, classes of equivalent
variables are detected and eliminated before and during the invariant computa-
tion, which would correspond to local symmetry detection and was not imple-
mented in our prototype.

Moreover, in [15], equality class elimination is done through replacement of
the symmetric places by a representative place. The full method reportedly im-
proves by a factor two the computation speed. Even if in the context of the
original article this is done only for ordinary Petri-nets (only one edge from one
place to a transition and from one transition to one place), we can see that it
can be even more efficient to use this replacement technique in our case:

Example 6.
...
A + B => 4*C
...

Instead of simply adding A ≤ B to our constraints, which will lead to 3
solutions when C = 1 before symmetry expansion: (A,B) ∈ {(0, 4), (1, 3), (2, 2)},
replacing A and B by D will reduce to a single solution D = 4 before expansion
of the subproblem A + B = D.

This partial detection of independent subproblems, which can be seen as a
complex form of symmetry identification, can once again be done syntactically
at the initial phase, and can be stated as follows: replace

∑
i ki ∗Ai by a single

variable A if all the Ai occur only in the context of this sum i.e. in our Petri net
all pre-transitions of Ai are connected to Ai with ki edges and to all other Aj

with kj edges and same for post-transitions. For a better constraint propagation,
another intermediate variable can be introduced such that A = gcd(ki) · A′. In
our experiments the simple case of parallel places (i.e. all ki equal to 1 in the
sum) was however the one encountered most often.

6 Example, the MAPK Cascade

The MAPK signal transduction cascade is a well studied system that appears
in lots of organisms and is very important for regulating cell division [16]. It is
composed of layers, each one activating the next, and in detailed models shows
two intertwined pathways conveying EGF and NGF signals to the nucleus.

A simple MAPK cascade model, that of [17] without scaffold, is used here as
an example to show the results of P-invariant computation.
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Fig. 1. 3 of the 7 P-invariants found in the MAPK cascade model of [17]. The
blue one (RAF), the pink one (MEK) and the green one (MAPK) with intersec-
tions in purple (blue+pink) and khaki (pink+green).
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Seven minimal semi-positive P-invariants are found almost instantly: RAFK,
RAFPH, RAF, MEKPH, MEK, MAPKPH, MAPK. Three of them are depicted
in figure 1, the full list is given in table 1.

RAFK, RAF-RAFK

RAFPH, RAFPH-RAF∼{p1}
RAF, MEK-RAF∼{p1}, RAF-RAFK, RAFPH-RAF∼{p1},
MEK∼{p1}-RAF∼{p1}, RAF∼{p1}
MEKPH, MEKPH-MEK∼{p1}, MEKPH-MEK∼{p1, p2}
MEK, MAPK-MEK∼{p1, p2}, MEK-RAF∼{p1}, MEKPH-MEK∼{p1},
MEKPH-MEK∼{p1, p2}, MAPK∼{p1}-MEK∼{p1, p2}, MEK∼{p1}-RAF∼{p1},
MEK∼{p1}, MEK∼{p1, p2}
MAPKPH, MAPKPH-MAPK∼{p1}, MAPKPH-MAPK∼{p1, p2}
MAPK, MAPK-MEK∼{p1, p2}, MAPKPH-MAPK∼{p1}, MAPK∼{p1, p2}
MAPK∼{p1}-MEK∼{p1, p2}, MAPK∼{p1}, MAPKPH-MAPK∼{p1, p2},

Table 1. P-invariants of the MAPK cascade model of [17]

Note that these 7 P-invariants define 7 algebraic conservation rules and thus
decrease the size of the corresponding ODE model from 22 variables and equa-
tions to only 15.

7 Evaluation on other examples

Schoeberl’s model is a more detailed version of the MAPK cascade, which is
quite comprehensive [8], but too big to be studied by hand. It can however be
easily broken down into fourteen more easily understandable units formed by
P-invariants, as shown in table 2, along other examples representing amongst
the biggest reaction networks publicly available.

Model transit. places P-invar. time (s) Invariant size

Schoeberl’s MAPK [8] 125 105 14 <1 from 2 to 44

Curie’s E2F/Rb [18] ∼500 ∼400 79 ∼10 from size 1 (EP300)
to about 230 (E2F1 box)

Kohn’s map [19] ∼800 ∼500 65 ∼40 from size 1 (Myt1) to
about 200 (pRb or cdk2)

Table 2. Minimal semi-positive P-invariant computation on bigger models of
biochemical reaction networks
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We could not compare our results with those provided in [12] since the models
they use, coming from metabolic pathways flux analyses, do not have an integer
stoichiometry matrix, however the examples of table 2 show the feasibility of
P-invariant computation by constraint programming for quite big networks.

Note that for networks of this size, the upper bound of the domain of variables
had to be set manually (to a reasonable value like 8 since actually only 2 or 3 was
needed in all the biological models we have encountered up to now). Otherwise,
the only over-approximation of the upper bound found was the product of the
l.c.m. of stoichiometric coefficients of each reaction, which explodes really fast
and leads to unnecessarily long computation. We thereby lose completeness, but
it is not enforced either by QR-factorization methods, and does not seem to miss
anything on real life examples.

8 Conclusion

P-invariants of a biological reaction model are not so difficult to compute in
most cases. They carry information about conservation laws that are useful for
efficient and precise dynamical simulation of the system, and provide some notion
of module, which is related to the life cycle of molecules. T-invariants are already
used more commonly, and get more and more focus recently.

We introduced a new method to efficiently compute P and T-invariants of a
reaction network, based on FD constraint programming. It includes symmetry
detection and breaking and scales up well to the biggest reaction networks found.
Completeness is lost on the biggest examples but we still look for a better upper
bound on domains to restore it.

The idea of applying constraint based methods to classical problems of the
Petri-net community is not new, but seems currently mostly applied to the
model-checking. We argue that structural problems (invariants, sinks, attrac-
tors, etc.) can also benefit from the know-how developed for finite domain CP
solving, like symmetry breaking, search heuristics, etc. and thus intend to gen-
eralize our approach to other problems of this category.
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