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Abstract. Siegel and colleagues recently proposed a principled definition of con-
sistency between biochemical/genetic reactions and high-throughput profiles of
cell activity. Following this work, we present an approach based on Answer Set
Programming to check the consistency of large-scale datasets. Furthermore, we
extend this approach to provide explanations for inconsistencies in the data, by
determining minimal representations of conflicts. In practice, this can be used to
identify unreliable data or missing reactions.
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1 Introduction

This paper deals with the analysis of high-throughput measurements in molecular bi-
ology, like microarray data or metabolic profiles [1]. Up to now, it is still a common
practice to use expression profiles merely for detecting over- or under-expressed genes
in a given condition, leaving to human experts the task of making biological sense out of
tens of gene identifiers. However, many efforts have also been made these years to make
a better use of high-throughput data, in particular, by integrating them into large-scale
models of transcriptional regulation or metabolic processes [2,3].

One possible approach consists in investigating the compatibility between the exper-
imental measurements and the knowledge that is available in reaction databases. This
can be done by using formal frameworks, for instance, those developed in [4] and [5]. A
crucial feature of this methodology is its ability to cope with qualitative knowledge (for
instance, reactions lacking kinetic details) and noisy data. In this work, we rely on the
model by Siegel and colleagues [4], later on referred to as the Sign Consistency Model
(SCM for short), for developing declarative techniques based on Answer Set Program-
ming (ASP for short) [6] to detect and explain inconsistencies in large datasets.

The SCM imposes constraints between experimental measurements and a graph
representation of cellular interactions, named an influence (or interaction) graph [7].
These constraints, later on referred to as sign consistency constraints, are described in
Section 2. Section 3 provides an intuitive introduction to ASP, a logic-programming
paradigm popular due to its declarativeness. In Section 4, we develop an ASP formu-
lation of checking the consistency between experimental profiles and influence graphs.
We further extend this approach in Section 5 to identifying minimal representations
of conflicts if the experimental data is inconsistent with an influence graph. For both
problems, we report preliminary experimental results on randomly generated instances.



Section 6 concludes this paper with a brief discussion and an outlook on future progres-
sion.

2 Influence Graphs and Sign Consistency Constraints

Influence graphs [7] (also called interaction graphs in the literature) are a common
representation for a wide class of dynamical systems. Basically, an influence graph is a
directed graph whose vertices are the input and state variables of a system and whose
edges express the effect of variables on each other. Informally, an edge j → i means
that the rate of variation of j in time influences the level of i. Each edge j → i of an
influence graph is labeled with a sign, either + or –, denoted by σ(j, i). Sign + (resp., –)
indicates that j tends to increase (resp., decrease) i. An example of influence graph is
given in Fig. 1; it represents a simplified model for the operon lactose in E. coli.
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Fig. 1. Simplified model of operon lactose in E. coli, represented as an influence graph. The
vertices represent either genes, metabolites or proteins, while the edges indicate the regulations
among them. Green arrows with normal head stand for positive regulations (activations) while
red arrows with tee heads stand for negative regulations (inhibitions). Vertices G and Le are
considered to be inputs of the system, that is they are unconstrained.

In the field of genetic networks, influence graphs have been investigated under var-
ious classes of dynamical systems – from ordinary differential equations [8], to syn-
chronous [9] and asynchronous [10] Boolean networks. Influence graph have also been
introduced in the field of qualitative reasoning [11], to describe physical systems where
a detailed quantitative description is not available. This has been the main motivation
for using influence graphs for knowledge representation in the context of biological
systems.

In the SCM, experimental profiles are supposed to come from steady state shift ex-
periments where, initially, the system is at steady state, then perturbed using control pa-



rameters, and eventually, it settles into another steady state (after a while). It is assumed
that the data measures the differences between the initial and the final state. Thus, for
each gene, protein, or metabolite, we know whether its concentration has increased or
decreased, while quantitative values are unavailable, unessential, or unreliable. By µ(i),
we denote the sign, again + or –, of the variation of a species i between the initial and
the final condition. One can easily enhance this setting by also considering null (or more
precisely, non-significant) variations, by exploiting the concept of sign algebra [11].

We above introduced influence graphs (as a representation of cellular interactions)
and labelings of their vertices with signs (as a representation of experimental profiles).
We now describe the constraints that relate both. Informally, for any vertex i, the ob-
served variation µ(i) should be explained by the influence of at least one predeces-
sor j of i in the influence graph. Thereby, the influence of j on i is given by the sign
µ(j)σ(j, i) ∈ {+, –}, where the multiplication of signs is derived from the multiplica-
tion on real numbers. Sign consistency constraints can then be formalized as follows.

Definition 1 (sign consistency constraints). Let (V,E, σ) be an influence graph, where
V is the set of vertices, E the set of edges, and σ : E → {+, –} a labeling of the edges.
Furthermore, let µ : V → {+, –} be a vertex labeling. Then, for any i ∈ V , the sign µ(i)
of i is consistent, if there is some edge j → i in E such that µ(i) = µ(j)σ(j, i).

Table 1 shows four different vertex labelings of the influence graph given in Fig. 1.
The labeling µ1 is consistent with the influence graph: the variation of each vertex
(apart from the inputs G, and Le, see Fig. 1) can be explained by the effect of one of
its regulators. For instance LacY receives one positive influence from cAMP-CRP, and
one negative influence from LacI, which accounts for the variation of LacY. The second
labeling, µ2 is not consistent: this time LacY receives only negative influences from
cAMP-CRP and LacI and its variation cannot be explained.

Species Le Li G LacY LacZ LacI A cAMP-CRP
µ1 – – – – – + – +
µ2 + + – + – + – –
µ3 + ? – ? ? + ? ?
µ4 ? ? ? – + ? ? +

Table 1. Some labelings for the influence graph depicted in Fig. 1.

The notion of (sign) consistency is extended to whole influence graphs in the nat-
ural way, requiring the sign of each vertex to be consistent. Furthermore, in practice,
influence graphs and experimental profiles are likely to be partial. Thus, we say that a
partial labeling of the vertices is consistent with a partially labeled influence graph, if
there is some consistent extension of vertex and edge labelings to all vertices and edges.
For instance, vertex labeling µ3 is consistent with the influence graph given in Fig. 1, as
setting the signs +, –, –, –, + to Li, LacY, LacZ, A and cAMP-CRP respectively extends
µ3 in a consistent labeling. On the other hand, µ4 cannot be consistently extended.



3 Answer Set Programming

This section provides a brief, informal introduction to ASP (see [6] for formal details).
ASP is an attractive declarative paradigm for knowledge representation and reasoning,
offering a rich modeling language [12,13] along with highly efficient inference engines
based on Boolean constraint solving technology [14,15,16]. The basic idea of ASP is to
encode a problem as a logic program such that its answer sets represent solutions.

In view of our application, we take advantage of the elevated expressiveness of dis-
junctive programs, being able to capture problems at the second level of the polynomial
hierarchy [17]. A disjunctive logic program is a finite set of rules of the form

a1; . . . ; al ← bl+1, . . . , bm,not cm+1, . . . ,not cn , (1)

where ai, bj , ck are atoms for 0 < i≤ l < j ≤m < k≤ n. A rule r as in (1) is called a
fact, if l = n = 1, and an integrity constraint, if l = 0. Intuitively, a rule amounts to an
implication, with ‘,’ standing for ‘∧’ and ‘;’ for ‘∨’; however, standard transformations
valid in classical logic, e.g., contraposition, are not valid under the answer set semantics.
In fact, the answer sets of a program are particular classical models of the program
satisfying a certain stability criterion (cf. [6]). Roughly, a set X of atoms is an answer
set of a program, if for each program rule of form (1), X contains a minimum number of
atoms among a1, . . . , al when bl+1, . . . , bm belong to X and no cm+1, . . . , cn belongs
to X . However, note that the disjunction in heads of rules, in general, is not exclusive.

Though answer sets are usually defined on ground (i.e., variable-free) programs,
the elegance of ASP comes from the possibility to provide non-ground problem en-
codings, where schematic rules amount to their ground instantiations. Grounders, like
lparse [13], are capable of combining a problem encoding and an instance (typically
a set of ground facts) into an equivalent ground program, which is then processed by
some ASP solver. We follow this methodology and provide encodings for the problems
considered below.

4 Checking Consistency

We now come to the first main question addressed in this paper, namely, how to check
whether an experimental profile is consistent with a given influence graph. Note that, if
the profile provides us with a sign for each vertex of the influence graph, the task can
be accomplished in polynomial time. However, as soon as the experimental profile has
missing values (which is very likely in practice), the problem becomes NP-hard [18].

Here, we present an encoding of the problem as a logic program such that each of its
answer sets matches a consistent extension of vertex and edge labelings. Our program
is composed of three parts, which we describe next.

Problem Instance The influence graph as well as the profile are given by ground facts.
For each species i, we introduce a fact vertex(i), and for each edge j → i, a fact
edge(j,i). Furthermore, if the variation s (either + or –) of a species i is given in the
profile, it is modeled by a fact obs vlabel(i,t), where t = p if s = + and t = n if s = –,
and if the sign s of an edge j → i is known, it is expressed by a fact obs elabel(j,i,t).



Generating Solution Candidates As stated above, our goal is to check whether an
experimental profile is consistent with an influence graph. If so, it is witnessed by total
labelings of the vertices and edges, which are generated via the following rules:

vlabel(V,p) ; vlabel(V,n)← vertex(V ) ,
elabel(U,V,p) ; elabel(U,V,n)← edge(U,V ) . (2)

Moreover, the following rules ensure that known labels are respected by total labelings:

vlabel(V,S)← obs vlabel(V,S) ,
elabel(U,V,S)← obs elabel(U,V,S) . (3)

Note that the stability criterion for answer sets implies that a known label derived via
rules in (3) is also derived via rules in (2), thus, excluding the opposite label.

Testing Solution Candidates Finally, we check whether the generated total labelings
satisfy the sign consistency constraints stated in Definition 1, stipulating an influence
of sign s for each vertex i with variation s. We thus define infl(i,s) to indicate that i
receives an influence of sign s, where the encoding contains facts sign(p) and sign(n):

infl(V,p)← edge(U,V ), elabel(U,V,S), vlabel(U,S), sign(S) ,
infl(V,n)← edge(U,V ), elabel(U,V,S), vlabel(U,T ), sign(S), sign(T ), S 6= T . (4)

Inconsistent labelings are then ruled out by integrity constraints of the following form:

← vertex(V ), vlabel(V,S), sign(S),not infl(V,S) . (5)

Benchmarks We assessed the efficiency of our approach on artificially generated in-
stances. Each instance is composed of a graph, a complete labeling of its edges with
signs, and a partial labeling of its vertices. Our random generator of instances has three
parameters: the number of vertices in the influence graph n, the average degree in the
graph β and the proportion of observed nodes γ. To generate one instance, we compute
a random graph under the model by Erdős-Rényi [19], where each pair of vertices has
equal probability to be an edge. The parameter β is fixed to 2.5, and varying between
2 and 3 (which are usual values in biological networks [20]) does not change the re-
sults significantly (data not shown). The labels on edges are chosen independently with
probability 1

2 for each sign. Then bγnc vertices are chosen with uniform probability,
and assigned a label with probability 1

2 for each sign.
The instances were solved using the grounder lparse [13] and the solver cmod-

els [21]. These programs were run on an Intel Core 2 Duo 2.4 GHz processor, with
4GB of memory under Linux. All reported times correspond to Unix user time.

The results are presented in Fig. 2: we separated execution time into grounding time
and solving time to show their relative contribution. The grounding stage transforms the
original logic program into an equivalent variable-free program. This step is required
because only ground programs can be solved efficiently in practice. Both graphics dis-
play the time needed for the corresponding phase as a function of the number of vertices
in the instance. For each size, we generate 50 instances distributed in 5 groups having a
different γ value (here: 1

100 , 1
50 , 1

30 , 1
20 , 1

10 ).
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Fig. 2. Execution time for checking the consistency of an influence graph with an expression
profile. The execution time is separated into its two contributions, namely grounding (on the left
hand) and actual solving (on the right hand).

Grounding time increases linearly with the size of the instance, and does not vary
significantly for instances of equal size. Solving time also increases linearly with the
size of the instance, though in a more sophisticated way: for a given size of the in-
stances, one can distinguish two clusters of instances having well-separated solving
time. Interestingly, all “easy” instances are inconsistent (or equivalently, all instances
which are consistent are in the “hard” cluster). Now for each one of these two types of
instances, the solving time grows linearly with the size of the instance.

From these results, we can see that checking consistency on data of realistic size
(i.e. influence graphs of several thousands of vertices) takes no more than a couple of
seconds on a standard PC.

5 Identifying Minimal Inconsistent Cores

Once it is proved that an experimental profile is inconsistent with a given influence
graph (i.e., if the logic program given in the previous section has no answer set), due to
the amount of data, it is crucial to provide explanations that are as concise as possible.
Here, we adopt a strategy that was successfully applied on real biological data in [22],
where the basic idea is to isolate minimal subgraphs of an influence graph such that the
vertices and edges cannot be labeled in a consistent way. This task is closely related to
extracting Minimal Unsatisfiable Cores (MUCs) [23] in the context of Boolean Satisfia-
bility (SAT) [14]. In allusion, we call a minimal subgraph of the influence graph whose
vertices and edges cannot be labeled consistently a Minimal Inconsistent Core (MIC).

As in the previous section, we present a disjunctive program such that its answer
sets match MICs. We assume that a problem instance, that is, an influence graph along
with an experimental profile, is represented by facts as specified in Section 4. The re-
mainder of the logic program is the problem encoding, consisting of three parts: the first
generating MIC candidates, the second asserting inconsistency, and the third verifying
minimality. Thereby, the generating part comprises the rules in (2) and (3) as well as:

active(V ) ; inactive(V )← vertex(V ) .



The purpose of this additional rule is to permit guessing a set of vertices to be marked
as active. The subgraph of the influence graph induced by the active vertices forms a
MIC candidate, which is tested via the two encoding parts described next.

Testing for Inconsistency By adapting a methodology used in [24], the following
subprogram makes sure that the active vertices belong to a subgraph that cannot be
labeled consistently, taking into account all labelings of the residual vertices and edges:

op(U,V )← active(V ), vlabel(V,n), edge(U,V ), elabel(U,V,S), vlabel(U,S), sign(S) ,
op(U,V )← active(V ), vlabel(V,p), edge(U,V ), elabel(U,V,S), vlabel(U,T ), sign(S),

sign(T ), S 6= T ,
bottom← active(V ), vertex(V ), op(U,V ) : edge(U,V ) ,3

← not bottom ,
vlabel(V,S)← bottom, vertex(V ), sign(S) ,

elabel(U,V,S)← bottom, edge(U,V ), sign(S) .

In this (part of the) encoding, op(U,V ) indicates that the influence of vertex U on active
vertex V is opposite to the variation of V . If all regulators of V have such an opposite
influence, the sign consistency constraint for V is violated. In this case, atom bottom
is produced, along with all labels for vertices and edges. Here, the stability criterion
for an answer set X imposes that bottom and all labels can only belong to X if the
given problem instance does not permit consistent labelings. Finally, integrity constraint
←not bottom necessitates the inclusion of bottom in any answer set, thus, stipulating
an inevitable violation of the sign consistency constraint for some vertex that is active.

Testing for Minimality The second test is based on the idea that, picking any active
vertex, the sign consistency constraints for all other active vertices should be satisfied
by appropriate labelings. This conception is implemented in the following subprogram:

vlabel’(W,V,p) ; vlabel’(W,V,n)← active(W ), vertex(W ), vertex(V ) ,
elabel’(W,U,V,p) ; elabel’(W,U,V,n)← active(W ), vertex(W ), edge(U,V ) ,

vlabel’(W,V,S)← active(W ), vertex(W ), obs vlabel(V,S) ,
elabel’(W,U,V,S)← active(W ), vertex(W ), obs elabel(U,V,S) ,

infl’(W,V,p)← active(W ), vertex(W ), active(V ), V 6= W, edge(U,V ),
elabel’(W,U,V,S), vlabel’(W,U,S), sign(S) ,

infl’(W,V,n)← active(W ), vertex(W ), active(V ), V 6= W, edge(U,V ),
elabel’(W,U,V,S), vlabel’(W,U,T ), sign(S), sign(T ), S 6= T ,

← active(W ), vertex(W ), active(V ), V 6= W, vertex(V ),
vlabel’(W,V,S), sign(S),not infl’(W,V,S) .

This subprogram is similar to the consistency check encoded via the rules in (2–5).
However, sign consistency constraints are here only checked for active vertices, and
they must be satisfiable for all but one arbitrary active vertex W . Since W ranges over
all vertices of the given influence graph, each active vertex is taken into consideration.

3 In the language of lparse [13], op(U,V ) : edge(U,V ) is used to refer to all ground atoms
op(j,i) for which edge(j,i) holds, with the respective ground atoms connected by ‘,’.



Benchmarks We assess the scalability of this approach within the setting given in
the previous section. There again, we distinguish between grounding time and solving
time. The results are presented in Fig. 3 (note that X and Y axis are in log-scale). For
grounding, we found a nearly perfect linear relationship (in log scale) between the size
of the instance and the grounding time, and the slope of the line is 2. In other words, the
grounding stage is here in O(n2), which is absolutely consistent with the fact that our
encoding for finding MIC grows also quadratically with the number of vertices (see for
instance the predicate vlabel’).

Concerning the solving time, we also obtain linear relationships, in the following
sense. For each size, the 50 instances are distributed into two groups. Most of them
are easily solvable, that is in less than a minute. However, a couple of instances are
strikingly more difficult, and may be between 100 and 1000 times longer to solve.
Nevertheless, we observe that the time needed to solve the easiest (resp., the hardest)
instances grows linearly (in log-scale) with the size of the instances. This time, the slope
of the line is slightly greater than 2, that is 2.3 and 3.2 for the easiest and the hardest
instances respectively. Unfortunately, we could not characterize the hardest instances
further.
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Fig. 3. Execution time for finding one MIC in an inconsistent instance. The execution time is
separated into its two contributions, namely grounding (on the left hand) and actual solving (on
the right hand). Note that on both cases, X and Y-axis are in log-scale.

These results suggest that finding a MIC in an inconsistent instance is computa-
tionally harder than checking consistency. This would not be surprising as extracting
MUCs from unsatisfiable set of clauses is provably complete for the second level of the
polynomial hierarchy [23]. However it should be noted that our instances are most often
very easily solved, and it is still an open question whether instances coming real data
fall into this category.

6 Discussion

We have provided an approach based on ASP to check the consistency between experi-
mental profiles and influence graphs. In case of inconsistency, the concept of a MIC can
be exploited for identifying concise explanations, pointing to unreliable data or missing



reactions. Such MICs can also be determined by means of ASP, and we have provided
an encoding for this purpose. The problem of finding MICs is closely related to the
extraction of MUCs in the context of SAT. From a knowledge representation point of
view, we however argue for our technique based on ASP, as it allows for an elegant way
to describe problems in terms of a uniform encoding and specific instances.

By now, a variety of efficient ASP tools are available, both for grounding and for
solving logic programs. An empirical assessment of them (on random as well as real
data), along with a comparison to existent methods not based on ASP, is defered to
an extended version of this paper. If the ASP approach computationally scales well,
its elegance and flexibility in problem modeling might make it attractive for biological
questions beyond the ones addressed here. It will also be interesting to investigate how
far the performance of ASP tools can be tuned by varying and optimizing encodings.
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8. Soulé, Christophe: Mathematical approaches to differentiation and gene regulation. Comptes
Rendus Biologies 329 (2006) 13–20
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